Main Page   Groups   Namespace List   Class Hierarchy   Alphabetical List   Compound List   File List   Namespace Members   Compound Members   File Members   Concepts
Public Types | Public Member Functions | Public Attributes | Static Public Attributes | Protected Attributes

itk::fem::Solver Class Reference

Main FEM solver. More...

#include <itkFEMSolver.h>

Inheritance diagram for itk::fem::Solver:
Inheritance graph
[legend]
Collaboration diagram for itk::fem::Solver:
Collaboration graph
[legend]

List of all members.

Public Types

typedef Element::ArrayType ElementArray
typedef Element::Float Float
typedef itk::Image
< Element::ConstPointer,
MaxGridDimensions
InterpolationGridType
typedef Load::ArrayType LoadArray
typedef Material::ArrayType MaterialArray
typedef Node::ArrayType NodeArray
typedef Element::VectorType VectorType

Public Member Functions

void ApplyBC (int dim=0, unsigned int matrix=0)
virtual void AssembleElementMatrix (Element::Pointer e)
void AssembleF (int dim=0)
void AssembleK (void)
virtual void AssembleLandmarkContribution (Element::Pointer e, float)
virtual void Clear (void)
void DecomposeK (void)
virtual void FinalizeMatrixAfterAssembly (void)
void GenerateGFN (void)
Float GetDeformationEnergy (unsigned int SolutionIndex=0)
const ElementGetElementAtPoint (const VectorType &pt) const
const InterpolationGridTypeGetInterpolationGrid (void) const
LinearSystemWrapper::Pointer GetLinearSystemWrapper ()
unsigned int GetNumberOfDegreesOfFreedom (void)
Float GetSolution (unsigned int i, unsigned int which=0)
virtual Float GetTimeStep (void) const
void InitializeInterpolationGrid (const VectorType &size, const VectorType &bb1, const VectorType &bb2)
virtual void InitializeLinearSystemWrapper (void)
virtual void InitializeMatrixForAssembly (unsigned int N)
void Read (std::istream &f)
void SetLinearSystemWrapper (LinearSystemWrapper::Pointer ls)
virtual void SetTimeStep (Float)
virtual void Solve (void)
 Solver ()
void UpdateDisplacements (void)
void Write (std::ostream &f)
virtual ~Solver ()

void InitializeInterpolationGrid (const VectorType &size)

Public Attributes

ElementArray el
LoadArray load
MaterialArray mat
NodeArray node

Static Public Attributes

static const unsigned int MaxGridDimensions = 3

Protected Attributes

LinearSystemWrapper::Pointer m_ls
unsigned int NGFN
unsigned int NMFC

Detailed Description

Main FEM solver.

This is the main class used for solving the FEM problems. It also stores all the objects that define the specific FEM problem. Normally there is one Solver object for each FEM problem.

Definition at line 41 of file itkFEMSolver.h.


Member Typedef Documentation

Array that holds pointers to all elements. since we want to be able to manipulate the array we have to use special pointers

Definition at line 54 of file itkFEMSolver.h.

Local float type

Definition at line 48 of file itkFEMSolver.h.

Type used to store interpolation grid

Definition at line 95 of file itkFEMSolver.h.

Array that holds special pointers to all external loads

Definition at line 66 of file itkFEMSolver.h.

Array that holds pointers to the materials

Definition at line 72 of file itkFEMSolver.h.

Array that holds special pointers to the nodes

Definition at line 60 of file itkFEMSolver.h.

VectorType from the Element base class

Definition at line 78 of file itkFEMSolver.h.


Constructor & Destructor Documentation

itk::fem::Solver::Solver (  ) 

Default constructor sets Solver to use VNL linear system .

See also:
Solver::SetLinearSystemWrapper
virtual itk::fem::Solver::~Solver (  )  [inline, virtual]

Virtual destructor

Definition at line 275 of file itkFEMSolver.h.


Member Function Documentation

void itk::fem::Solver::ApplyBC ( int  dim = 0,
unsigned int  matrix = 0 
)

Apply the boundary conditions to the system.

Note:
This function must be called after AssembleK().
Parameters:
matrix Index of a matrix, to which the BCs should be applied (master stiffness matrix). Normally this is zero, but in derived classes many matrices may be used and this index must be specified.
dim This is a parameter that can be passed to the function and is normally used with isotropic elements to specify the dimension in which the DOF is fixed.

Referenced by FinalizeMatrixAfterAssembly().

virtual void itk::fem::Solver::AssembleElementMatrix ( Element::Pointer  e  )  [virtual]

Copy the element stiffness matrix into the correct position in the master stiffess matrix. Since more complex Solver classes may need to assemble many matrices and may also do some funky stuff to them, this function is virtual and can be overriden in a derived solver class.

Reimplemented in itk::fem::SolverHyperbolic.

void itk::fem::Solver::AssembleF ( int  dim = 0  ) 

Assemble the master force vector.

Parameters:
dim This is a parameter that can be passed to the function and is normally used with isotropic elements to specify the dimension for which the master force vector should be assembled.
void itk::fem::Solver::AssembleK ( void   ) 

Assemble the master stiffness matrix (also apply the MFCs to K)

virtual void itk::fem::Solver::AssembleLandmarkContribution ( Element::Pointer  e,
float   
) [virtual]

Add the contribution of the landmark-containing elements to the correct position in the master stiffess matrix. Since more complex Solver classes may need to assemble many matrices and may also do some funky stuff to them, this function is virtual and can be overriden in a derived solver class.

virtual void itk::fem::Solver::Clear ( void   )  [virtual]

Cleans all data members, and initializes the solver to initial state.

void itk::fem::Solver::DecomposeK ( void   ) 

Decompose matrix using svd, qr, whatever ...

virtual void itk::fem::Solver::FinalizeMatrixAfterAssembly ( void   )  [inline, virtual]

This function is called after the assebly has been completed. In this class it is only used to apply the BCs. You may however use it to perform other stuff in derived solver classes.

Reimplemented in itk::fem::SolverHyperbolic.

Definition at line 189 of file itkFEMSolver.h.

References ApplyBC().

void itk::fem::Solver::GenerateGFN ( void   ) 

System solver functions. Call all six functions below (in listed order) to solve system. Assign a global freedom numbers to each DOF in a system. This must be done before any other solve function can be called.

Float itk::fem::Solver::GetDeformationEnergy ( unsigned int  SolutionIndex = 0  ) 

Get the total deformation energy using the chosen solution

const Element* itk::fem::Solver::GetElementAtPoint ( const VectorType pt  )  const

Returns the pointer to the element which contains global point pt.

Parameters:
pt Point in global coordinate system.
Note:
Interpolation grid must be initializes before you can call this function.
const InterpolationGridType* itk::fem::Solver::GetInterpolationGrid ( void   )  const [inline]

Returns pointer to interpolation grid, which is an itk::Image of pointers to Element objects. Normally you would use physical coordinates to get specific points (pointers to elements) from the image. You can then use the Elemenet::InterpolateSolution member function on the returned element to obtain the solution at this point.

Note:
Physical coordinates in an image correspond to the global coordinate system in which the mesh (nodes) are.

Definition at line 132 of file itkFEMSolver.h.

References itk::SmartPointer< TObjectType >::GetPointer().

LinearSystemWrapper::Pointer itk::fem::Solver::GetLinearSystemWrapper (  )  [inline]

Gets the LinearSystemWrapper object.

See also:
SetLinearSystemWrapper

Definition at line 298 of file itkFEMSolver.h.

References m_ls.

unsigned int itk::fem::Solver::GetNumberOfDegreesOfFreedom ( void   )  [inline]

Definition at line 257 of file itkFEMSolver.h.

References NGFN.

Float itk::fem::Solver::GetSolution ( unsigned int  i,
unsigned int  which = 0 
) [inline]

Definition at line 252 of file itkFEMSolver.h.

References itk::fem::Solution::GetSolutionValue(), and m_ls.

virtual Float itk::fem::Solver::GetTimeStep ( void   )  const [inline, virtual]

Returns the time step used for dynamic problems.

Reimplemented in itk::fem::SolverHyperbolic.

Definition at line 309 of file itkFEMSolver.h.

void itk::fem::Solver::InitializeInterpolationGrid ( const VectorType size  )  [inline]

Same as InitializeInterpolationGrid(size, {0,0...}, size);

Definition at line 116 of file itkFEMSolver.h.

References InitializeInterpolationGrid().

void itk::fem::Solver::InitializeInterpolationGrid ( const VectorType size,
const VectorType bb1,
const VectorType bb2 
)

Initialize the interpolation grid. The interpolation grid is used to find elements that containg specific points in a mesh. The interpolation grid stores pointers to elements for each point on a grid thereby providing a fast way (lookup table) to perform interpolation of results.

Note:
Interpolation grid must be reinitialized each time a mesh changes.
Parameters:
size Vector that represents number of points on a grid in each dimension.
bb1 Lower limit of a bounding box of a grid.
bb2 Upper limit of a bounding box of a grid.
See also:
GetInterpolationGrid

Referenced by InitializeInterpolationGrid().

virtual void itk::fem::Solver::InitializeLinearSystemWrapper ( void   )  [virtual]

Performs any initialization needed for LinearSystemWrapper object i.e. sets the maximum number of matrices and vectors.

Reimplemented in itk::fem::SolverHyperbolic.

virtual void itk::fem::Solver::InitializeMatrixForAssembly ( unsigned int  N  )  [virtual]

This function is called before assembling the matrices. You can override it in a derived class to account for special needs.

Parameters:
N Size of the matrix.

Reimplemented in itk::fem::SolverHyperbolic.

void itk::fem::Solver::Read ( std::istream &  f  ) 

Reads the whole system (nodes, materials and elements) from input stream

void itk::fem::Solver::SetLinearSystemWrapper ( LinearSystemWrapper::Pointer  ls  ) 

Sets the LinearSystemWrapper object that will be used when solving the master equation. If this function is not called, a default VNL linear system representation will be used (class LinearSystemWrapperVNL).

Parameters:
ls Pointer to an object of class which is derived from LinearSystemWrapper.
Note:
Once the LinearSystemWrapper object is changed, it is used until the member function SetLinearSystemWrapper is called again. Since LinearSystemWrapper object was created outside the Solver class, it should also be destroyed outside. Solver class will not destroy it when the Solver object is destroyed.
virtual void itk::fem::Solver::SetTimeStep ( Float   )  [inline, virtual]

Sets the time step used for dynamic problems.

Parameters:
dt New time step.

Reimplemented in itk::fem::SolverHyperbolic.

Definition at line 316 of file itkFEMSolver.h.

virtual void itk::fem::Solver::Solve ( void   )  [virtual]

Solve for the displacement vector u. May be overriden in derived classes.

Reimplemented in itk::fem::SolverCrankNicolson, and itk::fem::SolverHyperbolic.

void itk::fem::Solver::UpdateDisplacements ( void   ) 

Copy solution vector u to the corresponding nodal values, which are stored in node objects). This is standard post processing of the solution

void itk::fem::Solver::Write ( std::ostream &  f  ) 

Writes everything (nodes, materials and elements) to output stream


Member Data Documentation

Definition at line 55 of file itkFEMSolver.h.

Definition at line 67 of file itkFEMSolver.h.

Pointer to LinearSystemWrapper object.

Definition at line 332 of file itkFEMSolver.h.

Referenced by GetLinearSystemWrapper(), itk::fem::SolverCrankNicolson::GetLS(), and GetSolution().

Definition at line 73 of file itkFEMSolver.h.

const unsigned int itk::fem::Solver::MaxGridDimensions = 3 [static]

Since the itk::Image is templated over the number of dimensions, we have to know this at compile time. Solver class, however, can handle elements in any number of dimensions. In order to be able to use the Image, we choose the maximum number of space dimension that this function will be able to handle. Any unused dimensions are filled with zero.

For example: If a 2D node coordinates are {1.0,3.0} then the corresponding phisycal point in an image is {1.0,3.0,0.0};

Definition at line 90 of file itkFEMSolver.h.

unsigned int itk::fem::Solver::NGFN [protected]

Number of global degrees of freedom in a system

Definition at line 323 of file itkFEMSolver.h.

Referenced by GetNumberOfDegreesOfFreedom().

unsigned int itk::fem::Solver::NMFC [protected]

Number of multi freedom constraints in a system. This member is set in a AssembleK function.

Definition at line 329 of file itkFEMSolver.h.

Definition at line 61 of file itkFEMSolver.h.


The documentation for this class was generated from the following file:

Generated at Tue Jul 13 2010 04:00:07 for ITK by doxygen 1.7.1 written by Dimitri van Heesch, © 1997-2000