Main Page   Groups   Namespace List   Class Hierarchy   Alphabetical List   Compound List   File List   Namespace Members   Compound Members   File Members   Concepts

itk::Statistics::BatchSupervisedTrainingFunction< TSample, TTargetVector, ScalarType > Class Template Reference

#include <itkBatchSupervisedTrainingFunction.h>

Inheritance diagram for itk::Statistics::BatchSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >:

Inheritance graph
[legend]
Collaboration diagram for itk::Statistics::BatchSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >:

Collaboration graph
[legend]
List of all members.

Detailed Description

template<class TSample, class TTargetVector, class ScalarType>
class itk::Statistics::BatchSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >

Definition at line 28 of file itkBatchSupervisedTrainingFunction.h.

Public Types

typedef SmartPointer< const
Self
ConstPointer
typedef SquaredDifferenceErrorFunction<
InternalVectorType, ScalarType > 
DefaultPerformanceType
typedef std::vector< VectorTypeInputSampleVectorType
typedef Superclass::InternalVectorType InternalVectorType
typedef Superclass::NetworkType NetworkType
typedef std::vector< OutputVectorTypeOutputSampleVectorType
typedef TTargetVector::MeasurementVectorType OutputVectorType
typedef ErrorFunctionBase<
InternalVectorType, ScalarType > 
PerformanceFunctionType
typedef SmartPointer< SelfPointer
typedef BatchSupervisedTrainingFunction Self
typedef TrainingFunctionBase<
TSample, TTargetVector, ScalarType > 
Superclass
typedef ScalarType ValueType
typedef TSample::MeasurementVectorType VectorType

Public Member Functions

virtual void AbortGenerateDataOff ()
virtual void AbortGenerateDataOn ()
virtual LightObject::Pointer CreateAnother () const
virtual void DebugOff () const
virtual void DebugOn () const
VectorType defaultconverter (typename TSample::MeasurementVectorType v)
virtual void Delete ()
virtual const bool & GetAbortGenerateData ()
CommandGetCommand (unsigned long tag)
bool GetDebug () const
virtual const long & GetIterations ()
ValueType GetLearningRate ()
const MetaDataDictionaryGetMetaDataDictionary (void) const
MetaDataDictionaryGetMetaDataDictionary (void)
virtual unsigned long GetMTime () const
virtual const char * GetNameOfClass () const
virtual int GetReferenceCount () const
bool HasObserver (const EventObject &event) const
void InvokeEvent (const EventObject &) const
void InvokeEvent (const EventObject &)
virtual void Modified () const
void Print (std::ostream &os, Indent indent=0) const
virtual void Register () const
void RemoveAllObservers ()
void RemoveObserver (unsigned long tag)
virtual void SetAbortGenerateData (bool _arg)
void SetDebug (bool debugFlag) const
virtual void SetIterations (long _arg)
void SetLearningRate (ValueType)
void SetMetaDataDictionary (const MetaDataDictionary &rhs)
void SetNumOfIterations (long i)
void SetPerformanceFunction (PerformanceFunctionType *f)
virtual void SetReferenceCount (int)
void SetTargetValues (TTargetVector *targets)
virtual void SetThreshold (ScalarType _arg)
void SetTrainingSamples (TSample *samples)
OutputVectorType targetconverter (typename TTargetVector::MeasurementVectorType v)
virtual void Train (NetworkType *, TSample *, TTargetVector *)
virtual void Train (NetworkType *net, TSample *samples, TTargetVector *targets)
virtual void UnRegister () const
virtual void UpdateOutputData ()
void UpdateProgress (float amount)
unsigned long AddObserver (const EventObject &event, Command *) const
unsigned long AddObserver (const EventObject &event, Command *)
virtual const float & GetProgress ()
virtual void SetProgress (float _arg)

Static Public Member Functions

static void BreakOnError ()
static Pointer New ()
static bool GetGlobalWarningDisplay ()
static void GlobalWarningDisplayOff ()
static void GlobalWarningDisplayOn ()
static void SetGlobalWarningDisplay (bool flag)

Protected Member Functions

 BatchSupervisedTrainingFunction ()
virtual void GenerateData ()
bool PrintObservers (std::ostream &os, Indent indent) const
virtual void PrintSelf (std::ostream &os, Indent indent) const
virtual ~BatchSupervisedTrainingFunction ()
virtual void PrintHeader (std::ostream &os, Indent indent) const
virtual void PrintTrailer (std::ostream &os, Indent indent) const

Protected Attributes

InputSampleVectorType m_InputSamples
long m_Iterations
ValueType m_LearningRate
PerformanceFunctionType::Pointer m_PerformanceFunction
volatile int m_ReferenceCount
SimpleFastMutexLock m_ReferenceCountLock
TTargetVector * m_SampleTargets
bool m_Stop
OutputSampleVectorType m_Targets
ScalarType m_Threshold
TSample * m_TrainingSamples


Member Typedef Documentation

template<class TSample, class TTargetVector, class ScalarType>
typedef SmartPointer<const Self> itk::Statistics::BatchSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::ConstPointer

Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.

Definition at line 35 of file itkBatchSupervisedTrainingFunction.h.

template<class TSample, class TTargetVector, class ScalarType>
typedef SquaredDifferenceErrorFunction<InternalVectorType, ScalarType> itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >::DefaultPerformanceType [inherited]

Definition at line 55 of file itkTrainingFunctionBase.h.

template<class TSample, class TTargetVector, class ScalarType>
typedef std::vector<VectorType> itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >::InputSampleVectorType [inherited]

Definition at line 51 of file itkTrainingFunctionBase.h.

template<class TSample, class TTargetVector, class ScalarType>
typedef Superclass::InternalVectorType itk::Statistics::BatchSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::InternalVectorType

Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.

Definition at line 44 of file itkBatchSupervisedTrainingFunction.h.

template<class TSample, class TTargetVector, class ScalarType>
typedef Superclass::NetworkType itk::Statistics::BatchSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::NetworkType

Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.

Definition at line 41 of file itkBatchSupervisedTrainingFunction.h.

template<class TSample, class TTargetVector, class ScalarType>
typedef std::vector<OutputVectorType> itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >::OutputSampleVectorType [inherited]

Definition at line 52 of file itkTrainingFunctionBase.h.

template<class TSample, class TTargetVector, class ScalarType>
typedef TTargetVector::MeasurementVectorType itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >::OutputVectorType [inherited]

Definition at line 48 of file itkTrainingFunctionBase.h.

template<class TSample, class TTargetVector, class ScalarType>
typedef ErrorFunctionBase<InternalVectorType, ScalarType> itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >::PerformanceFunctionType [inherited]

Definition at line 54 of file itkTrainingFunctionBase.h.

template<class TSample, class TTargetVector, class ScalarType>
typedef SmartPointer<Self> itk::Statistics::BatchSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::Pointer

Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.

Definition at line 34 of file itkBatchSupervisedTrainingFunction.h.

template<class TSample, class TTargetVector, class ScalarType>
typedef BatchSupervisedTrainingFunction itk::Statistics::BatchSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::Self

Standard class typedefs.

Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.

Definition at line 32 of file itkBatchSupervisedTrainingFunction.h.

template<class TSample, class TTargetVector, class ScalarType>
typedef TrainingFunctionBase<TSample, TTargetVector, ScalarType> itk::Statistics::BatchSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::Superclass

Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.

Definition at line 33 of file itkBatchSupervisedTrainingFunction.h.

template<class TSample, class TTargetVector, class ScalarType>
typedef ScalarType itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >::ValueType [inherited]

Definition at line 44 of file itkTrainingFunctionBase.h.

template<class TSample, class TTargetVector, class ScalarType>
typedef TSample::MeasurementVectorType itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >::VectorType [inherited]

Definition at line 47 of file itkTrainingFunctionBase.h.


Constructor & Destructor Documentation

template<class TSample, class TTargetVector, class ScalarType>
itk::Statistics::BatchSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::BatchSupervisedTrainingFunction (  )  [protected]

template<class TSample, class TTargetVector, class ScalarType>
virtual itk::Statistics::BatchSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::~BatchSupervisedTrainingFunction (  )  [inline, protected, virtual]

Definition at line 56 of file itkBatchSupervisedTrainingFunction.h.


Member Function Documentation

virtual void itk::LightProcessObject::AbortGenerateDataOff (  )  [virtual, inherited]

virtual void itk::LightProcessObject::AbortGenerateDataOn (  )  [virtual, inherited]

Turn on and off the AbortGenerateData flag.

unsigned long itk::Object::AddObserver ( const EventObject event,
Command  
) const [inherited]

unsigned long itk::Object::AddObserver ( const EventObject event,
Command  
) [inherited]

Allow people to add/remove/invoke observers (callbacks) to any ITK object. This is an implementation of the subject/observer design pattern. An observer is added by specifying an event to respond to and an itk::Command to execute. It returns an unsigned long tag which can be used later to remove the event or retrieve the command. The memory for the Command becomes the responsibility of this object, so don't pass the same instance of a command to two different objects

static void itk::LightObject::BreakOnError (  )  [static, inherited]

This method is called when itkExceptionMacro executes. It allows the debugger to break on error.

virtual LightObject::Pointer itk::Object::CreateAnother (  )  const [virtual, inherited]

Create an object from an instance, potentially deferring to a factory. This method allows you to create an instance of an object that is exactly the same type as the referring object. This is useful in cases where an object has been cast back to a base class.

Reimplemented from itk::LightObject.

virtual void itk::Object::DebugOff (  )  const [virtual, inherited]

Turn debugging output off.

virtual void itk::Object::DebugOn (  )  const [virtual, inherited]

Turn debugging output on.

template<class TSample, class TTargetVector, class ScalarType>
VectorType itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >::defaultconverter ( typename TSample::MeasurementVectorType  v  )  [inline, inherited]

Definition at line 75 of file itkTrainingFunctionBase.h.

virtual void itk::LightObject::Delete (  )  [virtual, inherited]

Delete an itk object. This method should always be used to delete an object when the new operator was used to create it. Using the C delete method will not work with reference counting.

virtual void itk::LightProcessObject::GenerateData ( void   )  [inline, protected, virtual, inherited]

This method causes the filter to generate its output.

Reimplemented in itk::ClassifierBase< TDataContainer >, itk::ImageClassifierBase< TInputImage, TClassifiedImage >, itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >, itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >, itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >, itk::LevelSetNeighborhoodExtractor< TLevelSet >, itk::Statistics::SampleClassifier< TSample >, itk::Statistics::SampleClassifierWithMask< TSample, TMaskSample >, itk::ClassifierBase< TInputImage >, and itk::ClassifierBase< TSample >.

Definition at line 123 of file itkLightProcessObject.h.

virtual const bool& itk::LightProcessObject::GetAbortGenerateData (  )  [virtual, inherited]

Get the AbortGenerateData flag for the process object. Process objects may handle premature termination of execution in different ways.

Command* itk::Object::GetCommand ( unsigned long  tag  )  [inherited]

Get the command associated with the given tag. NOTE: This returns a pointer to a Command, but it is safe to asign this to a Command::Pointer. Since Command inherits from LightObject, at this point in the code, only a pointer or a reference to the Command can be used.

bool itk::Object::GetDebug (  )  const [inherited]

Get the value of the debug flag.

static bool itk::Object::GetGlobalWarningDisplay (  )  [static, inherited]

template<class TSample, class TTargetVector, class ScalarType>
virtual const long& itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >::GetIterations (  )  [virtual, inherited]

template<class TSample, class TTargetVector, class ScalarType>
ValueType itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >::GetLearningRate (  )  [inherited]

const MetaDataDictionary& itk::Object::GetMetaDataDictionary ( void   )  const [inherited]

Returns:
A constant reference to this objects MetaDataDictionary.

MetaDataDictionary& itk::Object::GetMetaDataDictionary ( void   )  [inherited]

Returns:
A reference to this objects MetaDataDictionary.
Warning:
This reference may be changed.

virtual unsigned long itk::Object::GetMTime (  )  const [virtual, inherited]

Return this objects modified time.

Reimplemented in itk::ImageRegistrationMethod< TFixedImage, TMovingImage >, itk::ImageToSpatialObjectRegistrationMethod< TFixedImage, TMovingSpatialObject >, itk::MultiResolutionImageRegistrationMethod< TFixedImage, TMovingImage >, itk::PointSetToImageRegistrationMethod< TFixedPointSet, TMovingImage >, itk::PointSetToPointSetRegistrationMethod< TFixedPointSet, TMovingPointSet >, itk::DeformationFieldSource< TOutputImage >, itk::InverseDeformationFieldImageFilter< TInputImage, TOutputImage >, itk::ResampleImageFilter< TInputImage, TOutputImage, TInterpolatorPrecisionType >, itk::VectorResampleImageFilter< TInputImage, TOutputImage, TInterpolatorPrecisionType >, itk::BoundingBox< TPointIdentifier, VPointDimension, TCoordRep, TPointsContainer >, itk::ImageAdaptor< TImage, TAccessor >, itk::ResampleImageFilter< TInputImage, TOutputImage, TInterpolatorPrecisionType >, itk::ImageSpatialObject< TDimension, TPixelType >, itk::MeshSpatialObject< TMesh >, itk::SceneSpatialObject< TSpaceDimension >, itk::SpatialObject< TDimension >, itk::ImageAdaptor< TImage, itk::Accessor::AsinPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::AbsPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::LogPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::ComplexToPhasePixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::Log10PixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::ExpPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::AddPixelAccessor< TImage::PixelType > >, itk::ImageAdaptor< itk::VectorImage< TPixelType, Dimension >, itk::Accessor::VectorImageToImagePixelAccessor< TPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::RGBToVectorPixelAccessor< TImage::PixelType::ComponentType > >, itk::ImageAdaptor< TImage, itk::PixelAccessor< TInternalType, TExternalType > >, itk::ImageAdaptor< TImage, itk::Accessor::SqrtPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::AcosPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::ComplexToModulusPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::ExpNegativePixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::VectorToRGBPixelAccessor< TImage::PixelType::ValueType > >, itk::ImageAdaptor< TImage, itk::Accessor::TanPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::ComplexToRealPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::RGBToLuminancePixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::AtanPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::SinPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::ComplexToImaginaryPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::CosPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageSpatialObject< TDimension, unsigned char >, itk::SpatialObject< 3 >, and itk::SpatialObject< ::itk::GetMeshDimension< TMesh >::PointDimension >.

Referenced by itk::SpatialObject< ::itk::GetMeshDimension< TMesh >::PointDimension >::GetObjectMTime().

template<class TSample, class TTargetVector, class ScalarType>
virtual const char* itk::Statistics::BatchSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::GetNameOfClass (  )  const [virtual]

Method for creation through the object factory.

Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.

virtual const float& itk::LightProcessObject::GetProgress (  )  [virtual, inherited]

Get the execution progress of a process object. The progress is a floating number between (0,1), 0 meaning no progress; 1 meaning the filter has completed execution.

virtual int itk::LightObject::GetReferenceCount (  )  const [inline, virtual, inherited]

Gets the reference count on this object.

Definition at line 98 of file itkLightObject.h.

static void itk::Object::GlobalWarningDisplayOff (  )  [inline, static, inherited]

Definition at line 100 of file itkObject.h.

References itk::Object::SetGlobalWarningDisplay().

static void itk::Object::GlobalWarningDisplayOn (  )  [inline, static, inherited]

Definition at line 98 of file itkObject.h.

References itk::Object::SetGlobalWarningDisplay().

bool itk::Object::HasObserver ( const EventObject event  )  const [inherited]

Return true if an observer is registered for this event.

void itk::Object::InvokeEvent ( const EventObject  )  const [inherited]

Call Execute on all the Commands observing this event id. The actions triggered by this call doesn't modify this object.

void itk::Object::InvokeEvent ( const EventObject  )  [inherited]

Call Execute on all the Commands observing this event id.

virtual void itk::Object::Modified (  )  const [virtual, inherited]

Update the modification time for this object. Many filters rely on the modification time to determine if they need to recompute their data.

Reimplemented in itk::NormalizeImageFilter< TInputImage, TOutputImage >, itk::ImageAdaptor< TImage, TAccessor >, itk::ImageAdaptor< TImage, itk::Accessor::AsinPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::AbsPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::LogPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::ComplexToPhasePixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::Log10PixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::ExpPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::AddPixelAccessor< TImage::PixelType > >, itk::ImageAdaptor< itk::VectorImage< TPixelType, Dimension >, itk::Accessor::VectorImageToImagePixelAccessor< TPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::RGBToVectorPixelAccessor< TImage::PixelType::ComponentType > >, itk::ImageAdaptor< TImage, itk::PixelAccessor< TInternalType, TExternalType > >, itk::ImageAdaptor< TImage, itk::Accessor::SqrtPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::AcosPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::ComplexToModulusPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::ExpNegativePixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::VectorToRGBPixelAccessor< TImage::PixelType::ValueType > >, itk::ImageAdaptor< TImage, itk::Accessor::TanPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::ComplexToRealPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::RGBToLuminancePixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::AtanPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::SinPixelAccessor< TImage::PixelType, TOutputPixelType > >, itk::ImageAdaptor< TImage, itk::Accessor::ComplexToImaginaryPixelAccessor< TImage::PixelType, TOutputPixelType > >, and itk::ImageAdaptor< TImage, itk::Accessor::CosPixelAccessor< TImage::PixelType, TOutputPixelType > >.

Referenced by itk::NarrowBandImageFilterBase< TInputImage, itk::Image< TOutputPixelType,::itk::GetImageDimension< TInputImage >::ImageDimension > >::InsertNarrowBandNode(), itk::MatrixOffsetTransformBase< TScalarType, 3, 3 >::SetCenter(), itk::HistogramAlgorithmBase< TInputHistogram >::SetInputHistogram(), itk::MatrixOffsetTransformBase< TScalarType, 3, 3 >::SetMatrix(), itk::NarrowBandImageFilterBase< TInputImage, itk::Image< TOutputPixelType,::itk::GetImageDimension< TInputImage >::ImageDimension > >::SetNarrowBand(), itk::NarrowBandImageFilterBase< TInputImage, itk::Image< TOutputPixelType,::itk::GetImageDimension< TInputImage >::ImageDimension > >::SetNarrowBandInnerRadius(), itk::NarrowBandImageFilterBase< TInputImage, itk::Image< TOutputPixelType,::itk::GetImageDimension< TInputImage >::ImageDimension > >::SetNarrowBandTotalRadius(), itk::MatrixOffsetTransformBase< TScalarType, 3, 3 >::SetOffset(), itk::ThresholdLabelerImageFilter< TInputImage, TOutputImage >::SetRealThresholds(), itk::CollidingFrontsImageFilter< TInputImage, TOutputImage >::SetSeedPoints1(), itk::CollidingFrontsImageFilter< TInputImage, TOutputImage >::SetSeedPoints2(), itk::NonUniformBSpline< TDimension >::SetSplineOrder(), itk::ThresholdLabelerImageFilter< TInputImage, TOutputImage >::SetThresholds(), itk::Statistics::GoodnessOfFitFunctionBase< TInputHistogram >::SetTotalObservedScale(), and itk::MatrixOffsetTransformBase< TScalarType, 3, 3 >::SetTranslation().

template<class TSample, class TTargetVector, class ScalarType>
static Pointer itk::Statistics::BatchSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::New (  )  [static]

Method for creation through the object factory.

Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.

void itk::LightObject::Print ( std::ostream &  os,
Indent  indent = 0 
) const [inherited]

Cause the object to print itself out.

Referenced by itk::WeakPointer< itk::ProcessObject >::Print().

virtual void itk::LightObject::PrintHeader ( std::ostream &  os,
Indent  indent 
) const [protected, virtual, inherited]

bool itk::Object::PrintObservers ( std::ostream &  os,
Indent  indent 
) const [protected, inherited]

template<class TSample, class TTargetVector, class ScalarType>
virtual void itk::Statistics::BatchSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::PrintSelf ( std::ostream &  os,
Indent  indent 
) const [protected, virtual]

Method to print the object.

Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.

virtual void itk::LightObject::PrintTrailer ( std::ostream &  os,
Indent  indent 
) const [protected, virtual, inherited]

virtual void itk::Object::Register (  )  const [virtual, inherited]

Increase the reference count (mark as used by another object).

Reimplemented from itk::LightObject.

void itk::Object::RemoveAllObservers (  )  [inherited]

Remove all observers .

void itk::Object::RemoveObserver ( unsigned long  tag  )  [inherited]

Remove the observer with this tag value.

virtual void itk::LightProcessObject::SetAbortGenerateData ( bool  _arg  )  [virtual, inherited]

Set the AbortGenerateData flag for the process object. Process objects may handle premature termination of execution in different ways.

void itk::Object::SetDebug ( bool  debugFlag  )  const [inherited]

Set the value of the debug flag. A non-zero value turns debugging on.

static void itk::Object::SetGlobalWarningDisplay ( bool  flag  )  [static, inherited]

This is a global flag that controls whether any debug, warning or error messages are displayed.

Referenced by itk::Object::GlobalWarningDisplayOff(), and itk::Object::GlobalWarningDisplayOn().

template<class TSample, class TTargetVector, class ScalarType>
virtual void itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >::SetIterations ( long  _arg  )  [virtual, inherited]

template<class TSample, class TTargetVector, class ScalarType>
void itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >::SetLearningRate ( ValueType   )  [inherited]

void itk::Object::SetMetaDataDictionary ( const MetaDataDictionary rhs  )  [inherited]

Returns:
Set the MetaDataDictionary

template<class TSample, class TTargetVector, class ScalarType>
void itk::Statistics::BatchSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::SetNumOfIterations ( long  i  ) 

Set the number of iterations

template<class TSample, class TTargetVector, class ScalarType>
void itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >::SetPerformanceFunction ( PerformanceFunctionType f  )  [inherited]

virtual void itk::LightProcessObject::SetProgress ( float  _arg  )  [virtual, inherited]

Set the execution progress of a process object. The progress is a floating number between (0,1), 0 meaning no progress; 1 meaning the filter has completed execution.

virtual void itk::Object::SetReferenceCount ( int   )  [virtual, inherited]

Sets the reference count (use with care)

Reimplemented from itk::LightObject.

template<class TSample, class TTargetVector, class ScalarType>
void itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >::SetTargetValues ( TTargetVector *  targets  )  [inherited]

template<class TSample, class TTargetVector, class ScalarType>
virtual void itk::Statistics::BatchSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::SetThreshold ( ScalarType  _arg  )  [virtual]

template<class TSample, class TTargetVector, class ScalarType>
void itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >::SetTrainingSamples ( TSample *  samples  )  [inherited]

template<class TSample, class TTargetVector, class ScalarType>
OutputVectorType itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >::targetconverter ( typename TTargetVector::MeasurementVectorType  v  )  [inline, inherited]

Definition at line 86 of file itkTrainingFunctionBase.h.

template<class TSample, class TTargetVector, class ScalarType>
virtual void itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >::Train ( NetworkType ,
TSample *  ,
TTargetVector *   
) [inline, virtual, inherited]

Definition at line 69 of file itkTrainingFunctionBase.h.

template<class TSample, class TTargetVector, class ScalarType>
virtual void itk::Statistics::BatchSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::Train ( NetworkType net,
TSample *  samples,
TTargetVector *  targets 
) [virtual]

virtual void itk::Object::UnRegister (  )  const [virtual, inherited]

Decrease the reference count (release by another object).

Reimplemented from itk::LightObject.

virtual void itk::LightProcessObject::UpdateOutputData (  )  [virtual, inherited]

Actually generate new output.

void itk::LightProcessObject::UpdateProgress ( float  amount  )  [inherited]

Update the progress of the process object. If a ProgressMethod exists, executes it. Then set the Progress ivar to amount. The parameter amount should range between (0,1).


Member Data Documentation

template<class TSample, class TTargetVector, class ScalarType>
InputSampleVectorType itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >::m_InputSamples [protected, inherited]

Definition at line 107 of file itkTrainingFunctionBase.h.

template<class TSample, class TTargetVector, class ScalarType>
long itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >::m_Iterations [protected, inherited]

Definition at line 109 of file itkTrainingFunctionBase.h.

template<class TSample, class TTargetVector, class ScalarType>
ValueType itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >::m_LearningRate [protected, inherited]

Definition at line 110 of file itkTrainingFunctionBase.h.

template<class TSample, class TTargetVector, class ScalarType>
PerformanceFunctionType::Pointer itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >::m_PerformanceFunction [protected, inherited]

Definition at line 111 of file itkTrainingFunctionBase.h.

volatile int itk::LightObject::m_ReferenceCount [mutable, protected, inherited]

Number of uses of this object by other objects.

Definition at line 119 of file itkLightObject.h.

SimpleFastMutexLock itk::LightObject::m_ReferenceCountLock [mutable, protected, inherited]

Mutex lock to protect modification to the reference count

Definition at line 122 of file itkLightObject.h.

template<class TSample, class TTargetVector, class ScalarType>
TTargetVector* itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >::m_SampleTargets [protected, inherited]

Definition at line 106 of file itkTrainingFunctionBase.h.

template<class TSample, class TTargetVector, class ScalarType>
bool itk::Statistics::BatchSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::m_Stop [protected]

Definition at line 62 of file itkBatchSupervisedTrainingFunction.h.

template<class TSample, class TTargetVector, class ScalarType>
OutputSampleVectorType itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >::m_Targets [protected, inherited]

Definition at line 108 of file itkTrainingFunctionBase.h.

template<class TSample, class TTargetVector, class ScalarType>
ScalarType itk::Statistics::BatchSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::m_Threshold [protected]

Definition at line 61 of file itkBatchSupervisedTrainingFunction.h.

template<class TSample, class TTargetVector, class ScalarType>
TSample* itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >::m_TrainingSamples [protected, inherited]

Definition at line 105 of file itkTrainingFunctionBase.h.


The documentation for this class was generated from the following file:
Generated at Tue Apr 15 01:49:19 2008 for ITK by doxygen 1.5.1 written by Dimitri van Heesch, © 1997-2000