ITK  4.1.0
Insight Segmentation and Registration Toolkit
Public Types | Public Member Functions | Static Public Member Functions | Protected Member Functions | Private Member Functions | Private Attributes
itk::CumulativeGaussianOptimizer Class Reference

#include <itkCumulativeGaussianOptimizer.h>

+ Inheritance diagram for itk::CumulativeGaussianOptimizer:
+ Collaboration diagram for itk::CumulativeGaussianOptimizer:

List of all members.

Public Types

typedef SmartPointer< const SelfConstPointer
typedef
CumulativeGaussianCostFunction 
CostFunctionType
typedef
CostFunctionType::MeasureType 
MeasureType
typedef SmartPointer< SelfPointer
typedef CumulativeGaussianOptimizer Self
typedef
MultipleValuedNonLinearOptimizer 
Superclass

Public Member Functions

virtual ::itk::LightObject::Pointer CreateAnother (void) const
virtual const char * GetNameOfClass () const
const std::string GetStopConditionDescription () const
void PrintArray (MeasureType *array)
void SetDataArray (MeasureType *dataArray)
void StartOptimization ()
virtual void SetDifferenceTolerance (double _arg)
virtual void SetVerbose (bool _arg)
virtual double GetComputedMean ()
virtual double GetComputedStandardDeviation ()
virtual double GetUpperAsymptote ()
virtual double GetLowerAsymptote ()
virtual MeasureTypeGetFinalSampledArray ()
virtual double GetFitError ()

Static Public Member Functions

static Pointer New ()

Protected Member Functions

 CumulativeGaussianOptimizer ()
void PrintSelf (std::ostream &os, Indent indent) const
virtual ~CumulativeGaussianOptimizer ()

Private Member Functions

MeasureTypeExtendGaussian (MeasureType *originalArray, MeasureType *extendedArray, int startingPointForInsertion)
double FindAverageSumOfSquaredDifferences (MeasureType *array1, MeasureType *array2)
void FindParametersOfGaussian (MeasureType *sampledGaussianArray)
void MeasureGaussianParameters (MeasureType *array)
void PrintComputedParameterHeader ()
void PrintComputedParameters ()
MeasureTypeRecalculateExtendedArrayFromGaussianParameters (MeasureType *originalArray, MeasureType *extendedArray, int startingPointForInsertion)
double VerticalBestShift (MeasureType *originalArray, MeasureType *newArray)

Private Attributes

double m_ComputedAmplitude
double m_ComputedMean
double m_ComputedStandardDeviation
double m_ComputedTransitionHeight
MeasureTypem_CumulativeGaussianArray
double m_DifferenceTolerance
MeasureTypem_FinalSampledArray
double m_FitError
double m_LowerAsymptote
double m_OffsetForMean
std::ostringstream m_StopConditionDescription
double m_UpperAsymptote
bool m_Verbose

Detailed Description

This is an optimizer specific to estimating the parameters of Cumulative Gaussian sampled data.

This optimizer will only work if the data array is sampled from a Cumulative Gaussian curve. It's more of a curve fitter than an optimizer, with the advantage of being fast and specific. It works by taking the derivative of the Cumulative Gaussian sample then repeatedly extending the tails of the Gaussian and recalculating the Gaussian parameters until the change in iterations is within tolerance or very small. The Gaussian is then integrated to reproduce the Cumulative Gaussian and the asymptotes are estimated by using least squares fit to estimate the constant from integration.

Definition at line 47 of file itkCumulativeGaussianOptimizer.h.


Member Typedef Documentation

Reimplemented from itk::MultipleValuedNonLinearOptimizer.

Definition at line 56 of file itkCumulativeGaussianOptimizer.h.

Cost function typedef. NOTE: This optimizer is specific to fitting a Cumulative Gaussian.

Reimplemented from itk::MultipleValuedNonLinearOptimizer.

Definition at line 60 of file itkCumulativeGaussianOptimizer.h.

Data array typedef.

Reimplemented from itk::MultipleValuedNonLinearOptimizer.

Definition at line 63 of file itkCumulativeGaussianOptimizer.h.

Reimplemented from itk::MultipleValuedNonLinearOptimizer.

Definition at line 55 of file itkCumulativeGaussianOptimizer.h.

Standard typedefs.

Reimplemented from itk::MultipleValuedNonLinearOptimizer.

Definition at line 53 of file itkCumulativeGaussianOptimizer.h.

Reimplemented from itk::MultipleValuedNonLinearOptimizer.

Definition at line 54 of file itkCumulativeGaussianOptimizer.h.


Constructor & Destructor Documentation


Member Function Documentation

virtual::itk::LightObject::Pointer itk::CumulativeGaussianOptimizer::CreateAnother ( void  ) const [virtual]

Create an object from an instance, potentially deferring to a factory. This method allows you to create an instance of an object that is exactly the same type as the referring object. This is useful in cases where an object has been cast back to a base class.

Reimplemented from itk::MultipleValuedNonLinearOptimizer.

MeasureType* itk::CumulativeGaussianOptimizer::ExtendGaussian ( MeasureType originalArray,
MeasureType extendedArray,
int  startingPointForInsertion 
) [private]

Extend the tails of the Gaussian.

Calculates the squared difference error between each Gaussian iteration loop.

void itk::CumulativeGaussianOptimizer::FindParametersOfGaussian ( MeasureType sampledGaussianArray) [private]

Given an array sampled from a Gaussin, compute the final parameters.

Set and get macros.

Set and get macros.

Set and get macros.

virtual double itk::CumulativeGaussianOptimizer::GetFitError ( ) [virtual]

Set and get macros.

Set and get macros.

virtual const char* itk::CumulativeGaussianOptimizer::GetNameOfClass ( ) const [virtual]

Run-time type information (and related methods).

Reimplemented from itk::MultipleValuedNonLinearOptimizer.

Report the reason for stopping.

Reimplemented from itk::Optimizer.

Set and get macros.

Measure the parameters of a Gaussian sampled array.

Method for creation through the object factory.

Reimplemented from itk::MultipleValuedNonLinearOptimizer.

Print an array.

Print the header for output table.

Print the computed parameters.

void itk::CumulativeGaussianOptimizer::PrintSelf ( std::ostream &  os,
Indent  indent 
) const [protected, virtual]

Methods invoked by Print() to print information about the object including superclasses. Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.

Reimplemented from itk::MultipleValuedNonLinearOptimizer.

MeasureType* itk::CumulativeGaussianOptimizer::RecalculateExtendedArrayFromGaussianParameters ( MeasureType originalArray,
MeasureType extendedArray,
int  startingPointForInsertion 
) [private]

Recalulate the parameters of the extended Gaussian array.

virtual void itk::CumulativeGaussianOptimizer::SetDifferenceTolerance ( double  _arg) [virtual]

Set and get macros.

virtual void itk::CumulativeGaussianOptimizer::SetVerbose ( bool  _arg) [virtual]

Set and get macros.

Start the optimizer.

Reimplemented from itk::Optimizer.

double itk::CumulativeGaussianOptimizer::VerticalBestShift ( MeasureType originalArray,
MeasureType newArray 
) [private]

Find the constant of the integrated sample.


Member Data Documentation

The final amplitude of the Gaussian.

Definition at line 110 of file itkCumulativeGaussianOptimizer.h.

The final mean of the Cumulative Gaussian.

Definition at line 104 of file itkCumulativeGaussianOptimizer.h.

The final standard deviation of the Cumulative Gaussian.

Definition at line 107 of file itkCumulativeGaussianOptimizer.h.

The transition height (distance between upper and lower asymptotes) of the Cumulative Gaussian.

Definition at line 114 of file itkCumulativeGaussianOptimizer.h.

Original data array.

Definition at line 136 of file itkCumulativeGaussianOptimizer.h.

When to stop the iteration for the Gaussian extension loop.

Definition at line 101 of file itkCumulativeGaussianOptimizer.h.

Array of values computed from the final parameters of the Cumulative Gaussian.

Definition at line 133 of file itkCumulativeGaussianOptimizer.h.

Least squares fit error as a measure of goodness.

Definition at line 129 of file itkCumulativeGaussianOptimizer.h.

The final lower asymptote of the Cumulative Gaussian.

Definition at line 120 of file itkCumulativeGaussianOptimizer.h.

Offset for the mean calculation.

Definition at line 123 of file itkCumulativeGaussianOptimizer.h.

Describe the stop condition

Definition at line 166 of file itkCumulativeGaussianOptimizer.h.

The final upper asymptote of the Cumulative Gaussian.

Definition at line 117 of file itkCumulativeGaussianOptimizer.h.

Flag to print iteration results.

Definition at line 126 of file itkCumulativeGaussianOptimizer.h.


The documentation for this class was generated from the following file: