ITK
4.1.0
Insight Segmentation and Registration Toolkit
|
#include <itkImageGaussianModelEstimator.h>
Public Types | |
typedef SmartPointer< const Self > | ConstPointer |
typedef ImageRegionIterator < TInputImage > | InputImageIterator |
typedef TInputImage::PixelType | InputImagePixelType |
typedef TInputImage::Pointer | InputImagePointer |
typedef TMembershipFunction::Pointer | MembershipFunctionPointer |
typedef TMembershipFunction | MembershipFunctionType |
typedef SmartPointer< Self > | Pointer |
typedef ImageGaussianModelEstimator | Self |
typedef ImageModelEstimatorBase < TInputImage, TMembershipFunction > | Superclass |
typedef ImageRegionIterator < TTrainingImage > | TrainingImageIterator |
typedef TTrainingImage::PixelType | TrainingImagePixelType |
typedef TTrainingImage::Pointer | TrainingImagePointer |
Public Member Functions | |
virtual ::itk::LightObject::Pointer | CreateAnother (void) const |
virtual const char * | GetNameOfClass () const |
virtual void | SetTrainingImage (TrainingImagePointer _arg) |
Static Public Member Functions | |
static Pointer | New () |
Protected Member Functions | |
void | GenerateData () |
Private Types | |
typedef TInputImage::SizeType | InputImageSizeType |
typedef vnl_matrix< double > | MatrixType |
Private Member Functions | |
void | EstimateGaussianModelParameters () |
virtual void | EstimateModels () |
ImageGaussianModelEstimator (const Self &) | |
void | operator= (const Self &) |
Private Attributes | |
MatrixType * | m_Covariance |
MatrixType | m_Means |
MatrixType | m_NumberOfSamples |
TrainingImagePointer | m_TrainingImage |
Static Private Attributes | |
static const unsigned int | VectorDimension = InputImagePixelType::Dimension |
virtual TrainingImagePointer | GetTrainingImage () const |
ImageGaussianModelEstimator () | |
~ImageGaussianModelEstimator () | |
virtual void | PrintSelf (std::ostream &os, Indent indent) const |
Base class for ImageGaussianModelEstimator object.
itkImageGaussianModelEstimator generates the Gaussian model for given tissue types (or class types) in an input training data set for segmentation. The training data set is typically provided as a set of labelled/classified data set by the user. A Gaussian model is generated for each label present in the training data set.
The user should ensure that both the input and training images are of the same size. The input data consists of the raw data and the training data has class labels associated with each pixel.
A zero label is used to identify the background. A model is not calcualted for the background (its mean and covariance will be zero). Positive labels are classes for which models will be estimated. Negative labels indicate unlabeled data where no models will be estimated.
This object supports data handling of multiband images. The object accepts the input image in vector format only, where each pixel is a vector and each element of the vector corresponds to an entry from 1 particular band of a multiband dataset. A single band image is treated as a vector image with a single element for every vector. The classified image is treated as a single band scalar image.
This function is templated over the type of input and output images. In addition, a third parameter for the MembershipFunction needs to be specified. In this case a Membership function that stores Gaussian models needs to be specified.
The function EstimateModels() calculates the various models, creates the membership function objects and populates them.
Definition at line 77 of file itkImageGaussianModelEstimator.h.
typedef SmartPointer< const Self > itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::ConstPointer |
Reimplemented from itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >.
Definition at line 85 of file itkImageGaussianModelEstimator.h.
typedef ImageRegionIterator< TInputImage > itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::InputImageIterator |
Type definitions for the iterators for the input and training images.
Definition at line 108 of file itkImageGaussianModelEstimator.h.
typedef TInputImage::PixelType itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::InputImagePixelType |
Type definition for the vector associated with input image pixel type.
Definition at line 101 of file itkImageGaussianModelEstimator.h.
typedef TInputImage::Pointer itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::InputImagePointer |
Type definition for the input image.
Reimplemented from itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >.
Definition at line 91 of file itkImageGaussianModelEstimator.h.
typedef TInputImage::SizeType itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::InputImageSizeType [private] |
Definition at line 135 of file itkImageGaussianModelEstimator.h.
typedef vnl_matrix< double > itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::MatrixType [private] |
Definition at line 133 of file itkImageGaussianModelEstimator.h.
typedef TMembershipFunction::Pointer itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::MembershipFunctionPointer |
Type definitions for the membership function .
Reimplemented from itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >.
Definition at line 113 of file itkImageGaussianModelEstimator.h.
typedef TMembershipFunction itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::MembershipFunctionType |
Type definitions for the membership function .
Definition at line 112 of file itkImageGaussianModelEstimator.h.
typedef SmartPointer< Self > itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::Pointer |
Reimplemented from itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >.
Definition at line 84 of file itkImageGaussianModelEstimator.h.
typedef ImageGaussianModelEstimator itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::Self |
Standard class typedefs.
Reimplemented from itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >.
Definition at line 82 of file itkImageGaussianModelEstimator.h.
typedef ImageModelEstimatorBase< TInputImage, TMembershipFunction > itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::Superclass |
Reimplemented from itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >.
Definition at line 83 of file itkImageGaussianModelEstimator.h.
typedef ImageRegionIterator< TTrainingImage > itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::TrainingImageIterator |
Definition at line 109 of file itkImageGaussianModelEstimator.h.
typedef TTrainingImage::PixelType itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::TrainingImagePixelType |
Type definitions for the vector holding training image pixel type.
Definition at line 105 of file itkImageGaussianModelEstimator.h.
typedef TTrainingImage::Pointer itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::TrainingImagePointer |
Type definitions for the training image.
Definition at line 97 of file itkImageGaussianModelEstimator.h.
itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::ImageGaussianModelEstimator | ( | ) | [protected] |
Get the training image.
itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::~ImageGaussianModelEstimator | ( | ) | [protected] |
Get the training image.
itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::ImageGaussianModelEstimator | ( | const Self & | ) | [private] |
virtual::itk::LightObject::Pointer itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::CreateAnother | ( | void | ) | const [virtual] |
Create an object from an instance, potentially deferring to a factory. This method allows you to create an instance of an object that is exactly the same type as the referring object. This is useful in cases where an object has been cast back to a base class.
Reimplemented from itk::LightProcessObject.
void itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::EstimateGaussianModelParameters | ( | ) | [private] |
virtual void itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::EstimateModels | ( | ) | [private, virtual] |
A function that generates the model based on the training input data. Achieves the goal of training the classifier.
Implements itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >.
void itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::GenerateData | ( | ) | [protected, virtual] |
Starts the image modelling process
Reimplemented from itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >.
virtual const char* itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::GetNameOfClass | ( | ) | const [virtual] |
Run-time type information (and related methods).
Reimplemented from itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >.
virtual TrainingImagePointer itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::GetTrainingImage | ( | ) | const [virtual] |
Get the training image.
static Pointer itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::New | ( | ) | [static] |
Method for creation through the object factory.
Reimplemented from itk::LightProcessObject.
void itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::operator= | ( | const Self & | ) | [private] |
This method causes the filter to generate its output.
Reimplemented from itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >.
virtual void itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::PrintSelf | ( | std::ostream & | os, |
Indent | indent | ||
) | const [protected, virtual] |
Get the training image.
Reimplemented from itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >.
virtual void itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::SetTrainingImage | ( | TrainingImagePointer | _arg | ) | [virtual] |
Set the training image.
MatrixType* itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::m_Covariance [private] |
Definition at line 143 of file itkImageGaussianModelEstimator.h.
MatrixType itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::m_Means [private] |
Definition at line 142 of file itkImageGaussianModelEstimator.h.
MatrixType itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::m_NumberOfSamples [private] |
Definition at line 141 of file itkImageGaussianModelEstimator.h.
TrainingImagePointer itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::m_TrainingImage [private] |
Definition at line 145 of file itkImageGaussianModelEstimator.h.
const unsigned int itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::VectorDimension = InputImagePixelType::Dimension [static, private] |
Dimension of each individual pixel vector.
Definition at line 139 of file itkImageGaussianModelEstimator.h.