ITK
4.1.0
Insight Segmentation and Registration Toolkit
|
#include <itkImageKmeansModelEstimator.h>
Base class for ImageKmeansModelEstimator object.
itkImageKmeansModelEstimator generates the kmeans model (cluster centers). This object performs clustering of data sets into different clusters, either using user-provided seed points as an initial guess or generating the clusters using a recursive approach when the user provides the number of desired clusters. Each cluster is represented by its cluster center. The two algorithms used are the generalized Lloyd algorithm (GLA) and the Linde-Buzo-Gray algorithm. The cluster centers are also referred to as codewords and a table of cluster centers is referred as a codebook.
As required by the GLA algorithm, the initial seed cluster should contain approximate centers of clusters. The GLA algorithm genrates updated cluster centers that result in a lower distortion than the input seed cluster when the input vectors are mapped/classified/labelled using the given codebooks.
If no codebook is provided, the Linde-Buzo-Gray algorithm is used. This algorithm uses the GLA algorithm at its core to generate the centroids of the input vectors (data). However, since there is no initial codebook, LBG first creates a one word codebook (or centroid of one cluster comprising of all the input training vectors). The LBG uses codeword or centroid splitting to create an increasing number of clusters. Each new set of clusters are optimized using the GLA algorithm. The number of clusters increases as $2^{n}$ n= 0, 1, ... The codebook is expected to be in the form of a vnl matrix, where there are N rows, each row representing the cluster mean of a given cluster. The number of columns in the codebook should be equal to the input image vector dimension.
The threshold parameter controls the ''optimality'' of the returned codebook, where optimality is related to the least possible mean-squared error distortion that can be found by the algorithm. For larger thresholds, the result will be less optimal. For smaller thresholds, the result will be more optimal. If a more optimal result is desired, then the algorithm will take longer to complete. A reasonable threshold value is 0.01.
If, during the operation of the algorithm, there are any unused clusters or cells, the m_OffsetAdd and m_OffsetMultiply parameters are used to split the cells with the highest distortion. This function will attempt to fill empty cells up to 10 times (unless the overall distortion is zero). Using 0.01 is a reasonable default values for the m_OffsetAdd and m_OffsetMultiply parameters.
If the GLA is unable to resolve the data into the desired number of clusters or cells, only the codewords which were used will be returned.
In terms of clustering, codewords are cluster centers, and a codebook is a table containing all cluster centers. The GLA produces results that are equivalent to the K-means clustering algorithm.
For more information about the algorithms, see A. Gersho and R. M. Gray, {Vector Quantization and Signal Compression}, Kluwer Academic Publishers, Boston, MA, 1992.
This object supports data handling of multiband images. The object accepts the input image in vector format only, where each pixel is a vector and each element of the vector corresponds to an entry from 1 particular band of a multiband dataset. A single band image is treated as a vector image with a single element for every vector.
This function is templated over the type of input image. In addition, a second parameter for the MembershipFunction needs to be specified. In this case a Membership function that store cluster centroids models needs to be specified.
The Update() function enables the calculation of the various models, creates the membership function objects and populates them.
Note: There is a second implementation of k-means algorithm in ITK under the itk::statistics namespace. While this algorithm (GLA/LBG based algorithm) is memory efficient, the other algorithm is time efficient.
Definition at line 131 of file itkImageKmeansModelEstimator.h.
typedef vnl_matrix< double > itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::CodebookMatrixOfDoubleType |
Type definition for a double matrix.
Definition at line 170 of file itkImageKmeansModelEstimator.h.
typedef vnl_matrix< int > itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::CodebookMatrixOfIntegerType |
Type definition for an integer vector.
Definition at line 173 of file itkImageKmeansModelEstimator.h.
typedef SmartPointer< const Self > itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::ConstPointer |
Reimplemented from itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >.
Definition at line 141 of file itkImageKmeansModelEstimator.h.
typedef TInputImage::SizeType itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::ImageSizeType [private] |
Definition at line 239 of file itkImageKmeansModelEstimator.h.
typedef ImageRegionConstIterator< TInputImage > itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::InputImageConstIterator |
Definition at line 164 of file itkImageKmeansModelEstimator.h.
typedef TInputImage::ConstPointer itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::InputImageConstPointer |
Definition at line 152 of file itkImageKmeansModelEstimator.h.
typedef ImageRegionIterator< TInputImage > itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::InputImageIterator |
Type definition for the input image iterator type.
Definition at line 162 of file itkImageKmeansModelEstimator.h.
typedef TInputImage::PixelType itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::InputImagePixelType |
Type definition for the input image pixel type.
Definition at line 159 of file itkImageKmeansModelEstimator.h.
typedef TInputImage::Pointer itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::InputImagePointer |
Reimplemented from itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >.
Definition at line 151 of file itkImageKmeansModelEstimator.h.
typedef TInputImage itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::InputImageType |
Type definition for the input image.
Reimplemented from itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >.
Definition at line 147 of file itkImageKmeansModelEstimator.h.
typedef TInputImage::PixelType::VectorType itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::InputImageVectorType |
Type definition for the vector associated with input image pixel type.
Definition at line 156 of file itkImageKmeansModelEstimator.h.
typedef TInputImage::PixelType::VectorType itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::InputPixelVectorType [private] |
Set up the vector to store the image data.
Definition at line 242 of file itkImageKmeansModelEstimator.h.
typedef TMembershipFunction::Pointer itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::MembershipFunctionPointer |
Type definitions for the membership function .
Reimplemented from itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >.
Definition at line 167 of file itkImageKmeansModelEstimator.h.
typedef SmartPointer< Self > itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::Pointer |
Reimplemented from itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >.
Definition at line 140 of file itkImageKmeansModelEstimator.h.
typedef ImageKmeansModelEstimator itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::Self |
Standard class typedefs.
Reimplemented from itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >.
Definition at line 136 of file itkImageKmeansModelEstimator.h.
typedef ImageModelEstimatorBase< TInputImage, TMembershipFunction > itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::Superclass |
Reimplemented from itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >.
Definition at line 138 of file itkImageKmeansModelEstimator.h.
itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::ImageKmeansModelEstimator | ( | ) | [protected] |
Return the codebook/cluster centers.
itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::~ImageKmeansModelEstimator | ( | ) | [protected] |
Return the codebook/cluster centers.
itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::ImageKmeansModelEstimator | ( | const Self & | ) | [private] |
void itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::Allocate | ( | ) | [protected] |
Allocate memory for the output model.
virtual::itk::LightObject::Pointer itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::CreateAnother | ( | void | ) | const [virtual] |
Create an object from an instance, potentially deferring to a factory. This method allows you to create an instance of an object that is exactly the same type as the referring object. This is useful in cases where an object has been cast back to a base class.
Reimplemented from itk::LightProcessObject.
void itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::EstimateKmeansModelParameters | ( | ) | [private] |
virtual void itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::EstimateModels | ( | ) | [private, virtual] |
A function that generates the cluster centers (model) corresponding to the estimates of the cluster centers (in the initial codebook). If no codebook is provided, then use the number of classes to determine the cluster centers or the Kmeans model. This is the the base function to call the K-means classifier.
Implements itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >.
void itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::GenerateData | ( | ) | [protected, virtual] |
Starts the image modelling process
Reimplemented from itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >.
virtual CodebookMatrixOfDoubleType itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::GetCodebook | ( | ) | const [virtual] |
Get the cluster centers.
CodebookMatrixOfDoubleType itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::GetKmeansResults | ( | void | ) | [inline] |
Return the codebook/cluster centers.
Definition at line 209 of file itkImageKmeansModelEstimator.h.
virtual int itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::GetMaxSplitAttempts | ( | ) | const [virtual] |
Get the manimum number of attempts to split a codeword.
virtual const char* itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::GetNameOfClass | ( | ) | const [virtual] |
Run-time type information (and related methods).
Reimplemented from itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >.
virtual double itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::GetOffsetAdd | ( | ) | const [virtual] |
Get the offset add parameter.
virtual double itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::GetOffsetMultiply | ( | ) | const [virtual] |
Get the offset multiplication parameter.
CodebookMatrixOfDoubleType itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::GetOutCodebook | ( | ) | [inline] |
Get the optimized codebook or the centroids of the clusters.
Definition at line 182 of file itkImageKmeansModelEstimator.h.
virtual double itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::GetThreshold | ( | ) | const [virtual] |
Get the threshold parameter.
void itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::NearestNeighborSearchBasic | ( | double * | distortion | ) | [private] |
static Pointer itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::New | ( | ) | [static] |
Method for creation through the object factory.
Reimplemented from itk::LightProcessObject.
void itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::operator= | ( | const Self & | ) | [private] |
This method causes the filter to generate its output.
Reimplemented from itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >.
void itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::Perturb | ( | double * | oldCodeword, |
int | scale, | ||
double * | newCodeword | ||
) | [private] |
void itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::PrintKmeansAlgorithmResults | ( | ) | [protected] |
Print out the results on the screen for visual feedback.
virtual void itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::PrintSelf | ( | std::ostream & | os, |
Indent | indent | ||
) | const [protected, virtual] |
Return the codebook/cluster centers.
Reimplemented from itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >.
void itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::Reallocate | ( | int | oldSize, |
int | newSize | ||
) | [private] |
void itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::SetCodebook | ( | CodebookMatrixOfDoubleType | InCodebook | ) |
Set the cluster centers.
virtual void itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::SetMaxSplitAttempts | ( | int | _arg | ) | [virtual] |
Set the maximum number of attempts to split a codeword.
virtual void itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::SetOffsetAdd | ( | double | _arg | ) | [virtual] |
Set the offset add parameter.
virtual void itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::SetOffsetMultiply | ( | double | _arg | ) | [virtual] |
Set the offset multiplication parameter.
virtual void itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::SetThreshold | ( | double | _arg | ) | [virtual] |
Set the threshold parameter.
void itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::SplitCodewords | ( | int | currentSize, |
int | numDesired, | ||
int | scale | ||
) | [private] |
int itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::WithCodebookUseGLA | ( | ) | [private] |
int itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::WithoutCodebookUseLBG | ( | ) | [private] |
CodebookMatrixOfDoubleType itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::m_Centroid [private] |
Definition at line 264 of file itkImageKmeansModelEstimator.h.
CodebookMatrixOfDoubleType itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::m_Codebook [private] |
Definition at line 261 of file itkImageKmeansModelEstimator.h.
CodebookMatrixOfDoubleType itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::m_CodewordDistortion [private] |
Definition at line 282 of file itkImageKmeansModelEstimator.h.
CodebookMatrixOfIntegerType itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::m_CodewordHistogram [private] |
Definition at line 281 of file itkImageKmeansModelEstimator.h.
SizeValueType itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::m_CurrentNumberOfCodewords [private] |
Definition at line 279 of file itkImageKmeansModelEstimator.h.
double itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::m_DoubleMaximum [private] |
Definition at line 273 of file itkImageKmeansModelEstimator.h.
int itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::m_MaxSplitAttempts [private] |
Definition at line 269 of file itkImageKmeansModelEstimator.h.
SizeValueType itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::m_NumberOfCodewords [private] |
Definition at line 278 of file itkImageKmeansModelEstimator.h.
double itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::m_OffsetAdd [private] |
Definition at line 267 of file itkImageKmeansModelEstimator.h.
double itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::m_OffsetMultiply [private] |
Definition at line 268 of file itkImageKmeansModelEstimator.h.
double itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::m_OutputDistortion [private] |
Definition at line 274 of file itkImageKmeansModelEstimator.h.
int itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::m_OutputNumberOfEmptyCells [private] |
Definition at line 275 of file itkImageKmeansModelEstimator.h.
double itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::m_Threshold [private] |
Definition at line 266 of file itkImageKmeansModelEstimator.h.
bool itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::m_ValidInCodebook [private] |
Definition at line 272 of file itkImageKmeansModelEstimator.h.
SizeValueType itk::ImageKmeansModelEstimator< TInputImage, TMembershipFunction >::m_VectorDimension [private] |
Definition at line 277 of file itkImageKmeansModelEstimator.h.