ITK
4.1.0
Insight Segmentation and Registration Toolkit
|
#include <itkSingleValuedNonLinearVnlOptimizer.h>
This class is a base for the Optimization methods that optimize a single valued function.
It is an Adaptor class for optimizers provided by the vnl library
Definition at line 36 of file itkSingleValuedNonLinearVnlOptimizer.h.
Command observer that will interact with the ITKVNL cost-function adaptor in order to generate iteration events. This will allow to overcome the limitation of VNL optimizers not offering callbacks for every iteration
Definition at line 48 of file itkSingleValuedNonLinearVnlOptimizer.h.
typedef SmartPointer< const Self > itk::SingleValuedNonLinearVnlOptimizer::ConstPointer |
Reimplemented from itk::SingleValuedNonLinearOptimizer.
Reimplemented in itk::AmoebaOptimizer, itk::LBFGSBOptimizer, itk::ConjugateGradientOptimizer, and itk::LBFGSOptimizer.
Definition at line 44 of file itkSingleValuedNonLinearVnlOptimizer.h.
typedef SingleValuedVnlCostFunctionAdaptor itk::SingleValuedNonLinearVnlOptimizer::CostFunctionAdaptorType [protected] |
Reimplemented in itk::LBFGSBOptimizer, itk::AmoebaOptimizer, itk::LBFGSOptimizer, and itk::ConjugateGradientOptimizer.
Definition at line 95 of file itkSingleValuedNonLinearVnlOptimizer.h.
Reimplemented from itk::SingleValuedNonLinearOptimizer.
Reimplemented in itk::AmoebaOptimizer, itk::LBFGSBOptimizer, itk::ConjugateGradientOptimizer, and itk::LBFGSOptimizer.
Definition at line 43 of file itkSingleValuedNonLinearVnlOptimizer.h.
Standard class typedefs.
Reimplemented from itk::SingleValuedNonLinearOptimizer.
Reimplemented in itk::AmoebaOptimizer, itk::LBFGSBOptimizer, itk::ConjugateGradientOptimizer, and itk::LBFGSOptimizer.
Definition at line 41 of file itkSingleValuedNonLinearVnlOptimizer.h.
Reimplemented from itk::SingleValuedNonLinearOptimizer.
Reimplemented in itk::AmoebaOptimizer, itk::LBFGSBOptimizer, itk::ConjugateGradientOptimizer, and itk::LBFGSOptimizer.
Definition at line 42 of file itkSingleValuedNonLinearVnlOptimizer.h.
Return Cached Values. These method have the advantage of not triggering a recomputation of the metric value, but it has the disadvantage of returning a value that may not be the one corresponding to the current parameters. For GUI update purposes, this method is a good option, for mathematical validation you should rather call GetValue().
virtual itk::SingleValuedNonLinearVnlOptimizer::~SingleValuedNonLinearVnlOptimizer | ( | ) | [protected, virtual] |
Return Cached Values. These method have the advantage of not triggering a recomputation of the metric value, but it has the disadvantage of returning a value that may not be the one corresponding to the current parameters. For GUI update purposes, this method is a good option, for mathematical validation you should rather call GetValue().
itk::SingleValuedNonLinearVnlOptimizer::SingleValuedNonLinearVnlOptimizer | ( | const Self & | ) | [private] |
virtual const ParametersType& itk::SingleValuedNonLinearVnlOptimizer::GetCachedCurrentPosition | ( | ) | [virtual] |
Return Cached Values. These method have the advantage of not triggering a recomputation of the metric value, but it has the disadvantage of returning a value that may not be the one corresponding to the current parameters. For GUI update purposes, this method is a good option, for mathematical validation you should rather call GetValue().
virtual const DerivativeType& itk::SingleValuedNonLinearVnlOptimizer::GetCachedDerivative | ( | ) | [virtual] |
Return Cached Values. These method have the advantage of not triggering a recomputation of the metric value, but it has the disadvantage of returning a value that may not be the one corresponding to the current parameters. For GUI update purposes, this method is a good option, for mathematical validation you should rather call GetValue().
virtual const MeasureType& itk::SingleValuedNonLinearVnlOptimizer::GetCachedValue | ( | ) | [virtual] |
Return Cached Values. These method have the advantage of not triggering a recomputation of the metric value, but it has the disadvantage of returning a value that may not be the one corresponding to the current parameters. For GUI update purposes, this method is a good option, for mathematical validation you should rather call GetValue().
const CostFunctionAdaptorType* itk::SingleValuedNonLinearVnlOptimizer::GetCostFunctionAdaptor | ( | void | ) | const [protected] |
CostFunctionAdaptorType* itk::SingleValuedNonLinearVnlOptimizer::GetCostFunctionAdaptor | ( | void | ) | [protected] |
virtual const bool& itk::SingleValuedNonLinearVnlOptimizer::GetMaximize | ( | ) | [virtual] |
Methods to define whether the cost function will be maximized or minimized. By default the VNL amoeba optimizer is only a minimizer. Maximization is implemented here by notifying the CostFunctionAdaptor which in its turn will multiply the function values and its derivative by -1.0.
bool itk::SingleValuedNonLinearVnlOptimizer::GetMinimize | ( | ) | const [inline] |
Methods to define whether the cost function will be maximized or minimized. By default the VNL amoeba optimizer is only a minimizer. Maximization is implemented here by notifying the CostFunctionAdaptor which in its turn will multiply the function values and its derivative by -1.0.
Definition at line 72 of file itkSingleValuedNonLinearVnlOptimizer.h.
virtual const char* itk::SingleValuedNonLinearVnlOptimizer::GetNameOfClass | ( | ) | const [virtual] |
Run-time type information (and related methods).
Reimplemented from itk::SingleValuedNonLinearOptimizer.
Reimplemented in itk::AmoebaOptimizer, itk::LBFGSBOptimizer, itk::ConjugateGradientOptimizer, and itk::LBFGSOptimizer.
CostFunctionAdaptorType* itk::SingleValuedNonLinearVnlOptimizer::GetNonConstCostFunctionAdaptor | ( | void | ) | const [protected] |
The purpose of this method is to get around the lack of const-correctness in VNL cost-functions and optimizers
void itk::SingleValuedNonLinearVnlOptimizer::IterationReport | ( | const EventObject & | event | ) | [private] |
Callback function for the Command Observer
virtual void itk::SingleValuedNonLinearVnlOptimizer::MaximizeOff | ( | ) | [virtual] |
Methods to define whether the cost function will be maximized or minimized. By default the VNL amoeba optimizer is only a minimizer. Maximization is implemented here by notifying the CostFunctionAdaptor which in its turn will multiply the function values and its derivative by -1.0.
virtual void itk::SingleValuedNonLinearVnlOptimizer::MaximizeOn | ( | ) | [virtual] |
Methods to define whether the cost function will be maximized or minimized. By default the VNL amoeba optimizer is only a minimizer. Maximization is implemented here by notifying the CostFunctionAdaptor which in its turn will multiply the function values and its derivative by -1.0.
void itk::SingleValuedNonLinearVnlOptimizer::MinimizeOff | ( | ) | [inline] |
Methods to define whether the cost function will be maximized or minimized. By default the VNL amoeba optimizer is only a minimizer. Maximization is implemented here by notifying the CostFunctionAdaptor which in its turn will multiply the function values and its derivative by -1.0.
Definition at line 78 of file itkSingleValuedNonLinearVnlOptimizer.h.
void itk::SingleValuedNonLinearVnlOptimizer::MinimizeOn | ( | ) | [inline] |
Methods to define whether the cost function will be maximized or minimized. By default the VNL amoeba optimizer is only a minimizer. Maximization is implemented here by notifying the CostFunctionAdaptor which in its turn will multiply the function values and its derivative by -1.0.
Definition at line 76 of file itkSingleValuedNonLinearVnlOptimizer.h.
void itk::SingleValuedNonLinearVnlOptimizer::operator= | ( | const Self & | ) | [private] |
Types inherited from the superclass
Reimplemented from itk::SingleValuedNonLinearOptimizer.
Reimplemented in itk::LBFGSBOptimizer, itk::AmoebaOptimizer, itk::LBFGSOptimizer, and itk::ConjugateGradientOptimizer.
void itk::SingleValuedNonLinearVnlOptimizer::PrintSelf | ( | std::ostream & | os, |
Indent | indent | ||
) | const [protected, virtual] |
Print out internal state
Reimplemented from itk::SingleValuedNonLinearOptimizer.
Reimplemented in itk::LBFGSBOptimizer, itk::AmoebaOptimizer, and itk::LBFGSOptimizer.
virtual void itk::SingleValuedNonLinearVnlOptimizer::SetCostFunction | ( | SingleValuedCostFunction * | costFunction | ) | [pure virtual] |
Set the cost Function. This method has to be overloaded by derived classes because the CostFunctionAdaptor requires to know the number of parameters at construction time. This number of parameters is obtained at run-time from the itkCostFunction. As a consequence each derived optimizer should construct its own CostFunctionAdaptor when overloading this method
Implemented in itk::LBFGSBOptimizer, itk::AmoebaOptimizer, itk::ConjugateGradientOptimizer, and itk::LBFGSOptimizer.
void itk::SingleValuedNonLinearVnlOptimizer::SetCostFunctionAdaptor | ( | CostFunctionAdaptorType * | adaptor | ) | [protected] |
virtual void itk::SingleValuedNonLinearVnlOptimizer::SetMaximize | ( | bool | _arg | ) | [virtual] |
Methods to define whether the cost function will be maximized or minimized. By default the VNL amoeba optimizer is only a minimizer. Maximization is implemented here by notifying the CostFunctionAdaptor which in its turn will multiply the function values and its derivative by -1.0.
void itk::SingleValuedNonLinearVnlOptimizer::SetMinimize | ( | bool | v | ) | [inline] |
Methods to define whether the cost function will be maximized or minimized. By default the VNL amoeba optimizer is only a minimizer. Maximization is implemented here by notifying the CostFunctionAdaptor which in its turn will multiply the function values and its derivative by -1.0.
Definition at line 74 of file itkSingleValuedNonLinearVnlOptimizer.h.
ParametersType itk::SingleValuedNonLinearVnlOptimizer::m_CachedCurrentPosition [mutable, private] |
Definition at line 123 of file itkSingleValuedNonLinearVnlOptimizer.h.
DerivativeType itk::SingleValuedNonLinearVnlOptimizer::m_CachedDerivative [mutable, private] |
Definition at line 125 of file itkSingleValuedNonLinearVnlOptimizer.h.
MeasureType itk::SingleValuedNonLinearVnlOptimizer::m_CachedValue [mutable, private] |
Definition at line 124 of file itkSingleValuedNonLinearVnlOptimizer.h.
Definition at line 121 of file itkSingleValuedNonLinearVnlOptimizer.h.
Definition at line 117 of file itkSingleValuedNonLinearVnlOptimizer.h.
bool itk::SingleValuedNonLinearVnlOptimizer::m_Maximize [private] |
Definition at line 119 of file itkSingleValuedNonLinearVnlOptimizer.h.