ITK  4.1.0
Insight Segmentation and Registration Toolkit
itkIterativeSupervisedTrainingFunction.h
Go to the documentation of this file.
00001 /*=========================================================================
00002  *
00003  *  Copyright Insight Software Consortium
00004  *
00005  *  Licensed under the Apache License, Version 2.0 (the "License");
00006  *  you may not use this file except in compliance with the License.
00007  *  You may obtain a copy of the License at
00008  *
00009  *         http://www.apache.org/licenses/LICENSE-2.0.txt
00010  *
00011  *  Unless required by applicable law or agreed to in writing, software
00012  *  distributed under the License is distributed on an "AS IS" BASIS,
00013  *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
00014  *  See the License for the specific language governing permissions and
00015  *  limitations under the License.
00016  *
00017  *=========================================================================*/
00018 #ifndef __itkIterativeSupervisedTrainingFunction_h
00019 #define __itkIterativeSupervisedTrainingFunction_h
00020 
00021 #include "itkTrainingFunctionBase.h"
00022 
00023 namespace itk
00024 {
00025 namespace Statistics
00026 {
00033 template<class TSample, class TTargetVector, class ScalarType>
00034 class IterativeSupervisedTrainingFunction : public TrainingFunctionBase<TSample, TTargetVector, ScalarType>
00035 {
00036 public:
00037 
00038   typedef IterativeSupervisedTrainingFunction                      Self;
00039   typedef TrainingFunctionBase<TSample, TTargetVector, ScalarType> Superclass;
00040   typedef SmartPointer<Self>                                       Pointer;
00041   typedef SmartPointer<const Self>                                 ConstPointer;
00042 
00044   itkTypeMacro(IterativeSupervisedTrainingFunction, TrainingFunctionBase);
00045 
00047   itkNewMacro(Self);
00048 
00049   typedef typename Superclass::NetworkType        NetworkType;
00050   typedef typename Superclass::InternalVectorType InternalVectorType;
00051 
00052   void SetNumOfIterations(SizeValueType i);
00053 
00054   virtual void Train(NetworkType* net, TSample* samples, TTargetVector* targets);
00055 
00056   itkSetMacro(Threshold, ScalarType);
00057 
00058 protected:
00059 
00060   IterativeSupervisedTrainingFunction();
00061   virtual ~IterativeSupervisedTrainingFunction(){};
00062 
00064   virtual void PrintSelf( std::ostream& os, Indent indent ) const;
00065 
00066   ScalarType m_Threshold;
00067   bool       m_Stop; //stop condition
00068 };
00069 
00070 } // end namespace Statistics
00071 } // end namespace itk
00072 
00073 #ifndef ITK_MANUAL_INSTANTIATION
00074   #include "itkIterativeSupervisedTrainingFunction.hxx"
00075 #endif
00076 
00077 #endif
00078