ITK
4.1.0
Insight Segmentation and Registration Toolkit
|
#include <itkIterativeSupervisedTrainingFunction.h>
Public Types | |
typedef SmartPointer< const Self > | ConstPointer |
typedef Superclass::InternalVectorType | InternalVectorType |
typedef Superclass::NetworkType | NetworkType |
typedef SmartPointer< Self > | Pointer |
typedef IterativeSupervisedTrainingFunction | Self |
typedef TrainingFunctionBase < TSample, TTargetVector, ScalarType > | Superclass |
Public Member Functions | |
virtual ::itk::LightObject::Pointer | CreateAnother (void) const |
virtual const char * | GetNameOfClass () const |
void | SetNumOfIterations (SizeValueType i) |
virtual void | SetThreshold (ScalarType _arg) |
virtual void | Train (NetworkType *net, TSample *samples, TTargetVector *targets) |
Static Public Member Functions | |
static Pointer | New () |
Protected Member Functions | |
IterativeSupervisedTrainingFunction () | |
virtual void | PrintSelf (std::ostream &os, Indent indent) const |
virtual | ~IterativeSupervisedTrainingFunction () |
Protected Attributes | |
bool | m_Stop |
ScalarType | m_Threshold |
This is the itkIterativeSupervisedTrainingFunction class.
Definition at line 34 of file itkIterativeSupervisedTrainingFunction.h.
typedef SmartPointer<const Self> itk::Statistics::IterativeSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::ConstPointer |
Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.
Definition at line 41 of file itkIterativeSupervisedTrainingFunction.h.
typedef Superclass::InternalVectorType itk::Statistics::IterativeSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::InternalVectorType |
Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.
Definition at line 50 of file itkIterativeSupervisedTrainingFunction.h.
typedef Superclass::NetworkType itk::Statistics::IterativeSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::NetworkType |
Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.
Definition at line 47 of file itkIterativeSupervisedTrainingFunction.h.
typedef SmartPointer<Self> itk::Statistics::IterativeSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::Pointer |
Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.
Definition at line 40 of file itkIterativeSupervisedTrainingFunction.h.
typedef IterativeSupervisedTrainingFunction itk::Statistics::IterativeSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::Self |
Standard class typedefs.
Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.
Definition at line 38 of file itkIterativeSupervisedTrainingFunction.h.
typedef TrainingFunctionBase<TSample, TTargetVector, ScalarType> itk::Statistics::IterativeSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::Superclass |
Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.
Definition at line 39 of file itkIterativeSupervisedTrainingFunction.h.
itk::Statistics::IterativeSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::IterativeSupervisedTrainingFunction | ( | ) | [protected] |
virtual itk::Statistics::IterativeSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::~IterativeSupervisedTrainingFunction | ( | ) | [inline, protected, virtual] |
Definition at line 61 of file itkIterativeSupervisedTrainingFunction.h.
virtual::itk::LightObject::Pointer itk::Statistics::IterativeSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::CreateAnother | ( | void | ) | const [virtual] |
Create an object from an instance, potentially deferring to a factory. This method allows you to create an instance of an object that is exactly the same type as the referring object. This is useful in cases where an object has been cast back to a base class.
Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.
virtual const char* itk::Statistics::IterativeSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::GetNameOfClass | ( | ) | const [virtual] |
Method for creation through the object factory.
Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.
static Pointer itk::Statistics::IterativeSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::New | ( | ) | [static] |
Method for creation through the object factory.
Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.
virtual void itk::Statistics::IterativeSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::PrintSelf | ( | std::ostream & | os, |
Indent | indent | ||
) | const [protected, virtual] |
Method to print the object.
Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.
void itk::Statistics::IterativeSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::SetNumOfIterations | ( | SizeValueType | i | ) |
virtual void itk::Statistics::IterativeSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::SetThreshold | ( | ScalarType | _arg | ) | [virtual] |
virtual void itk::Statistics::IterativeSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::Train | ( | NetworkType * | net, |
TSample * | samples, | ||
TTargetVector * | targets | ||
) | [virtual] |
bool itk::Statistics::IterativeSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::m_Stop [protected] |
Definition at line 67 of file itkIterativeSupervisedTrainingFunction.h.
ScalarType itk::Statistics::IterativeSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::m_Threshold [protected] |
Definition at line 66 of file itkIterativeSupervisedTrainingFunction.h.