ITK  4.1.0
Insight Segmentation and Registration Toolkit
Namespaces | Classes
itk::Statistics Namespace Reference

Namespaces

namespace  Algorithm

Classes

class  BackPropagationLayer
 This is the itkBackPropagationLayer class. More...
class  BatchSupervisedTrainingFunction
 This is the itkBatchSupervisedTrainingFunction class. More...
class  ChiSquareDistribution
 ChiSquareDistribution class defines the interface for a univariate Chi-Square distribution (pdfs, cdfs, etc.). More...
class  CompletelyConnectedWeightSet
 This is the itkCompletelyConnectedWeightSet class. More...
class  CovarianceSampleFilter
 Calculates the covariance matrix of the target sample data. More...
class  DecisionRule
 Base class for decision rules that return a class label based on a set of discriminant scores. More...
class  DenseFrequencyContainer2
 This class is a container for frequencies of bins in an histogram. More...
class  DistanceMetric
 this class declares common interfaces for distance functions. More...
class  DistanceToCentroidMembershipFunction
 DistanceToCentroidMembershipFunction models class membership using a distance metric. More...
class  ErrorBackPropagationLearningFunctionBase
 The ErrorBackPropagationLearningFunctionBase is the base class for all the ErrorBackPropagationLearning strategies. More...
class  ErrorBackPropagationLearningWithMomentum
 The ErrorBackPropagationLearningWithMomentum is the base class for all the ErrorBackPropagationLearning strategies. More...
class  ErrorFunctionBase
 This is the itkErrorFunctionBase class. More...
class  EuclideanDistanceMetric
 Euclidean distance function. More...
class  EuclideanSquareDistanceMetric
 Computes Euclidean distance between origin and given measurement vector. More...
class  ExpectationMaximizationMixtureModelEstimator
 This class generates the parameter estimates for a mixture model using expectation maximization strategy. More...
class  GaussianDistribution
 GaussianDistribution class defines the interface for a univariate Gaussian distribution (pdfs, cdfs, etc.). More...
class  GaussianMembershipFunction
 GaussianMembershipFunction models class membership through a multivariate Gaussian function. More...
class  GaussianMixtureModelComponent
 is a component (derived from MixtureModelComponentBase) for Gaussian class. This class is used in ExpectationMaximizationMixtureModelEstimator. More...
class  GaussianRadialBasisFunction
 This is the itkGaussianRadialBasisFunction class. More...
class  GaussianTransferFunction
 This is the itkGaussianTransferFunction class. More...
struct  GetHistogramDimension
class  HardLimitTransferFunction
 This is the itkHardLimitTransferFunction class. More...
class  Histogram
 This class stores measurement vectors in the context of n-dimensional histogram. More...
class  HistogramToRunLengthFeaturesFilter
 This class computes texture feature coefficients from a grey level run-length matrix. More...
class  HistogramToTextureFeaturesFilter
 This class computes texture feature coefficients from a grey level co-occurrence matrix. More...
class  IdentityTransferFunction
 This is the itkIdentityTransferFunction class. More...
class  ImageClassifierFilter
 Image classification class. More...
class  ImageJointDomainTraits
 This class provides the type defintion for the measurement vector in the joint domain (range domain -- pixel values + spatial domain -- pixel's physical coordinates). More...
class  ImageToHistogramFilter
 This class generates an histogram from an image. More...
class  ImageToListSampleAdaptor
 This class provides ListSample interface to ITK Image. More...
class  ImageToListSampleFilter
 The class takes an image as input and generates a list sample as output. More...
class  InputFunctionBase
 This is the itkInputFunctionBase class. More...
class  IterativeSupervisedTrainingFunction
 This is the itkIterativeSupervisedTrainingFunction class. More...
class  JointDomainImageToListSampleAdaptor
 This adaptor returns measurement vectors composed of an image pixel's range domain value (pixel value) and spatial domain value (pixel's physical coordiantes). More...
class  KdTree
 This class provides methods for k-nearest neighbor search and related data structures for a k-d tree. More...
class  KdTreeBasedKmeansEstimator
 fast k-means algorithm implementation using k-d tree structure More...
class  KdTreeGenerator
 This class generates a KdTree object without centroid information. More...
class  KdTreeNode
 This class defines the interface of its derived classes. More...
class  KdTreeNonterminalNode
 This is a subclass of the KdTreeNode. More...
class  KdTreeTerminalNode
 This class is the node that doesn't have any child node. The IsTerminal method returns true for this class. This class stores the instance identifiers belonging to this node, while the nonterminal nodes do not store them. The AddInstanceIdentifier and GetInstanceIdentifier are storing and retrieving the instance identifiers belonging to this node. More...
class  KdTreeWeightedCentroidNonterminalNode
 This is a subclass of the KdTreeNode. More...
class  LayerBase
 This is the itkLayerBase class. More...
class  LearningFunctionBase
 The LearningFunctionBase is the base class for all the learning strategies. More...
class  ListSample
 This class is the native implementation of the a Sample with an STL container. More...
class  LogSigmoidTransferFunction
 This is the itkLogSigmoidTransferFunction class. More...
class  MahalanobisDistanceMembershipFunction
 MahalanobisDistanceMembershipFunction models class membership using Mahalanobis distance. More...
class  MahalanobisDistanceMetric
 MahalanobisDistanceMetric class computes a Mahalanobis distance given a mean and covariance. More...
class  ManhattanDistanceMetric
 Euclidean distance function. More...
class  MaskedImageToHistogramFilter
 This class generates an histogram from an image. More...
class  MaximumDecisionRule
 A decision rule that returns the class label with the largest discriminant score. More...
class  MaximumRatioDecisionRule
 A decision rule that operates as a frequentist's approximation to Bayes rule. More...
class  MeanSampleFilter
 Given a sample, this filter computes the sample mean. More...
class  MeanSquaredErrorFunction
class  MeasurementVectorPixelTraits
class  MeasurementVectorTraits
class  MeasurementVectorTraitsTypes
class  MeasurementVectorTraitsTypes< std::vector< T > >
class  MembershipFunctionBase
 MembershipFunctionBase defines common interfaces for membership functions. More...
class  MembershipSample
 Container for storing the instance-identifiers of other sample with their associated class labels. More...
class  MersenneTwisterRandomVariateGenerator
 MersenneTwisterRandom random variate generator. More...
class  MinimumDecisionRule
 A decision rule that returns the class label with the smallest discriminant score. More...
class  MixtureModelComponentBase
 base class for distribution modules that supports analytical way to update the distribution parameters More...
class  MultilayerNeuralNetworkBase
 This is the itkMultilayerNeuralNetworkBase class. More...
class  MultiquadricRadialBasisFunction
 This is the itkMultiquadricRadialBasisFunction class. More...
class  NeighborhoodSampler
 Generates a Subsample out of a Sample, based on a user-provided distance to a MeasurementVector. More...
class  NeuralNetworkObject
 This is the itkNeuralNetworkObject class. More...
class  NNetDistanceMetricBase
 This is the itkNNetDistanceMetricBase class. More...
class  NormalVariateGenerator
 Normal random variate generator. More...
class  OneHiddenLayerBackPropagationNeuralNetwork
 This is the itkOneHiddenLayerBackPropagationNeuralNetwork class. More...
class  PointSetToListSampleAdaptor
 This class provides ListSample interface to ITK PointSet. More...
class  ProbabilityDistribution
 ProbabilityDistribution class defines common interface for statistical distributions (pdfs, cdfs, etc.). More...
class  ProductInputFunction
 This is the itkProductInputFunction class. More...
class  QuickPropLearningRule
 The QuickPropLearningRule is the base class for all the ErrorBackPropagationLearning strategies. More...
class  RadialBasisFunctionBase
 This is the itkRadialBasisFunctionBase class. More...
class  RandomVariateGeneratorBase
 Defines common interfaces for random variate generators. More...
class  RBFBackPropagationLearningFunction
 This is the itkRBFBackPropagationLearningFunction class. More...
class  RBFLayer
 This is the itkRBFLayer class. More...
class  RBFNetwork
 This is the itkRBFNetwork class. More...
class  Sample
 A collection of measurements for statistical analysis. More...
class  SampleClassifierFilter
 Sample classification class. More...
class  SampleToHistogramFilter
 Computes the Histogram corresponding to a Sample. More...
class  SampleToSubsampleFilter
 Base class of filters intended to select subsamples from samples. More...
class  ScalarImageToCooccurrenceListSampleFilter
 Converts pixel data into a list of pairs in order to compute a cooccurrence Histogram. More...
class  ScalarImageToCooccurrenceMatrixFilter
 This class computes a co-occurence matrix (histogram) from a given image and a mask image if provided. Coocurrence matrces are used for image texture description. More...
class  ScalarImageToHistogramGenerator
 TODO. More...
class  ScalarImageToRunLengthFeaturesFilter
 This class computes run length descriptions from an image. More...
class  ScalarImageToRunLengthMatrixFilter
 This class computes a run length matrix (histogram) from a given image and a mask image if provided. Run length matrces are used for image texture description. More...
class  ScalarImageToTextureFeaturesFilter
 This class computes texture descriptions from an image. More...
class  SigmoidTransferFunction
 This is the itkSigmoidTransferFunction class. More...
class  SignedHardLimitTransferFunction
 This is the itkSignedHardLimitTransferFunction class. More...
class  SparseFrequencyContainer2
 his class is a container for an histogram. More...
class  SquaredDifferenceErrorFunction
 This is the itkSquaredDifferenceErrorFunction class. More...
class  StandardDeviationPerComponentSampleFilter
 Calculates the covariance matrix of the target sample data. More...
class  Subsample
 This class stores a subset of instance identifiers from another sample object. You can create a subsample out of another sample object or another subsample object. The class is useful when storing or extracting a portion of a sample object. Note that when the elements of a subsample are sorted, the instance identifiers of the subsample are sorted without changing the original source sample. Most Statistics algorithms (that derive from StatisticsAlgorithmBase accept Subsample objects as inputs). More...
class  SumInputFunction
 This is the itkSumInputFunction class. More...
class  SymmetricSigmoidTransferFunction
 This is the itkSymmetricSigmoidTransferFunction class. More...
class  TanHTransferFunction
 This is the itkTanHTransferFunction class. More...
class  TanSigmoidTransferFunction
 This is the itkTanSigmoidTransferFunction class. More...
class  TDistribution
 TDistribution class defines the interface for a univariate Student-t distribution (pdfs, cdfs, etc.). More...
class  TrainingFunctionBase
 This is the itkTrainingFunctionBase class. More...
class  TransferFunctionBase
 This is the itkTransferFunctionBase class. More...
class  TwoHiddenLayerBackPropagationNeuralNetwork
 This is the itkTwoHiddenLayerBackPropagationNeuralNetwork class. More...
class  VectorContainerToListSampleAdaptor
 This class provides ListSample interface to ITK VectorContainer. More...
class  WeightedCentroidKdTreeGenerator
 This class generates a KdTree object with centroid information. More...
class  WeightedCovarianceSampleFilter
 Calculates the covariance matrix of the target sample data. where each measurement vector has an associated weight value. More...
class  WeightedMeanSampleFilter
 Given a sample where each measurement vector has associated weight value, this filter computes the sample mean. More...
class  WeightSetBase
 This is the itkWeightSetBase class. More...