ITK
4.1.0
Insight Segmentation and Registration Toolkit
|
#include <itkGaussianMixtureModelComponent.h>
is a component (derived from MixtureModelComponentBase) for Gaussian class. This class is used in ExpectationMaximizationMixtureModelEstimator.
On every iteration of EM estimation, this class's GenerateData method is called to compute the new distribution parameters.
Recent API changes: The static const macro to get the length of a measurement vector, MeasurementVectorSize
has been removed to allow the length of a measurement vector to be specified at run time. It is now obtained at run time from the sample set as input. Please use the function GetMeasurementVectorSize() to get the length.
Definition at line 50 of file itkGaussianMixtureModelComponent.h.
typedef SmartPointer< const Self > itk::Statistics::GaussianMixtureModelComponent< TSample >::ConstPointer |
Reimplemented from itk::Statistics::MixtureModelComponentBase< TSample >.
Definition at line 58 of file itkGaussianMixtureModelComponent.h.
typedef WeightedCovarianceSampleFilter< TSample > itk::Statistics::GaussianMixtureModelComponent< TSample >::CovarianceEstimatorType |
Definition at line 79 of file itkGaussianMixtureModelComponent.h.
typedef CovarianceEstimatorType::OutputType itk::Statistics::GaussianMixtureModelComponent< TSample >::CovarianceMatrixType |
Type of the covariance matrix
Definition at line 85 of file itkGaussianMixtureModelComponent.h.
typedef WeightedMeanSampleFilter< TSample > itk::Statistics::GaussianMixtureModelComponent< TSample >::MeanEstimatorType |
Types of the mean and the covariance calculator that will update this component's distribution parameters
Definition at line 78 of file itkGaussianMixtureModelComponent.h.
typedef MeanEstimatorType::OutputType itk::Statistics::GaussianMixtureModelComponent< TSample >::MeanVectorType |
Type of the mean vector
Definition at line 82 of file itkGaussianMixtureModelComponent.h.
typedef Superclass::MeasurementVectorSizeType itk::Statistics::GaussianMixtureModelComponent< TSample >::MeasurementVectorSizeType |
Reimplemented from itk::Statistics::MixtureModelComponentBase< TSample >.
Definition at line 67 of file itkGaussianMixtureModelComponent.h.
typedef Superclass::MeasurementVectorType itk::Statistics::GaussianMixtureModelComponent< TSample >::MeasurementVectorType |
Typedefs from the superclass
Reimplemented from itk::Statistics::MixtureModelComponentBase< TSample >.
Definition at line 62 of file itkGaussianMixtureModelComponent.h.
typedef Superclass::MembershipFunctionType itk::Statistics::GaussianMixtureModelComponent< TSample >::MembershipFunctionType |
typedef for the MembershipFunctionBase
Reimplemented from itk::Statistics::MixtureModelComponentBase< TSample >.
Definition at line 68 of file itkGaussianMixtureModelComponent.h.
typedef GaussianMembershipFunction< MeasurementVectorType > itk::Statistics::GaussianMixtureModelComponent< TSample >::NativeMembershipFunctionType |
Type of the membership function. Gaussian density function
Definition at line 74 of file itkGaussianMixtureModelComponent.h.
typedef Superclass::ParametersType itk::Statistics::GaussianMixtureModelComponent< TSample >::ParametersType |
Reimplemented from itk::Statistics::MixtureModelComponentBase< TSample >.
Definition at line 70 of file itkGaussianMixtureModelComponent.h.
typedef SmartPointer< Self > itk::Statistics::GaussianMixtureModelComponent< TSample >::Pointer |
Reimplemented from itk::Statistics::MixtureModelComponentBase< TSample >.
Definition at line 57 of file itkGaussianMixtureModelComponent.h.
typedef GaussianMixtureModelComponent itk::Statistics::GaussianMixtureModelComponent< TSample >::Self |
Standard class typedefs.
Reimplemented from itk::Statistics::MixtureModelComponentBase< TSample >.
Definition at line 55 of file itkGaussianMixtureModelComponent.h.
typedef MixtureModelComponentBase< TSample > itk::Statistics::GaussianMixtureModelComponent< TSample >::Superclass |
Reimplemented from itk::Statistics::MixtureModelComponentBase< TSample >.
Definition at line 56 of file itkGaussianMixtureModelComponent.h.
typedef Superclass::WeightArrayType itk::Statistics::GaussianMixtureModelComponent< TSample >::WeightArrayType |
typedef of strorage for the weights
Reimplemented from itk::Statistics::MixtureModelComponentBase< TSample >.
Definition at line 69 of file itkGaussianMixtureModelComponent.h.
itk::Statistics::GaussianMixtureModelComponent< TSample >::GaussianMixtureModelComponent | ( | ) | [protected] |
virtual itk::Statistics::GaussianMixtureModelComponent< TSample >::~GaussianMixtureModelComponent | ( | ) | [inline, protected, virtual] |
Definition at line 95 of file itkGaussianMixtureModelComponent.h.
double itk::Statistics::GaussianMixtureModelComponent< TSample >::CalculateParametersChange | ( | ) | [protected] |
Returns the sum of squared changes in parameters between iterations
virtual::itk::LightObject::Pointer itk::Statistics::GaussianMixtureModelComponent< TSample >::CreateAnother | ( | void | ) | const [virtual] |
Standard Macros
Reimplemented from itk::Object.
void itk::Statistics::GaussianMixtureModelComponent< TSample >::GenerateData | ( | ) | [protected, virtual] |
Computes the new distribution parameters
Implements itk::Statistics::MixtureModelComponentBase< TSample >.
virtual const char* itk::Statistics::GaussianMixtureModelComponent< TSample >::GetNameOfClass | ( | ) | const [virtual] |
Standard Macros
Reimplemented from itk::Statistics::MixtureModelComponentBase< TSample >.
static Pointer itk::Statistics::GaussianMixtureModelComponent< TSample >::New | ( | ) | [static] |
Standard Macros
Reimplemented from itk::Object.
void itk::Statistics::GaussianMixtureModelComponent< TSample >::PrintSelf | ( | std::ostream & | os, |
Indent | indent | ||
) | const [protected, virtual] |
Methods invoked by Print() to print information about the object including superclasses. Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.
Reimplemented from itk::Statistics::MixtureModelComponentBase< TSample >.
void itk::Statistics::GaussianMixtureModelComponent< TSample >::SetParameters | ( | const ParametersType & | parameters | ) |
Sets the component's distribution parameters.
void itk::Statistics::GaussianMixtureModelComponent< TSample >::SetSample | ( | const TSample * | sample | ) | [virtual] |
Sets the input sample
Reimplemented from itk::Statistics::MixtureModelComponentBase< TSample >.
CovarianceEstimatorType::MatrixType itk::Statistics::GaussianMixtureModelComponent< TSample >::m_Covariance [private] |
Definition at line 110 of file itkGaussianMixtureModelComponent.h.
CovarianceEstimatorType::Pointer itk::Statistics::GaussianMixtureModelComponent< TSample >::m_CovarianceEstimator [private] |
Definition at line 114 of file itkGaussianMixtureModelComponent.h.
NativeMembershipFunctionType::Pointer itk::Statistics::GaussianMixtureModelComponent< TSample >::m_GaussianMembershipFunction [private] |
Definition at line 106 of file itkGaussianMixtureModelComponent.h.
MeanEstimatorType::MeasurementVectorType itk::Statistics::GaussianMixtureModelComponent< TSample >::m_Mean [private] |
Definition at line 108 of file itkGaussianMixtureModelComponent.h.
MeanEstimatorType::Pointer itk::Statistics::GaussianMixtureModelComponent< TSample >::m_MeanEstimator [private] |
Definition at line 112 of file itkGaussianMixtureModelComponent.h.