ITK  4.13.0
Insight Segmentation and Registration Toolkit
Public Types | Public Member Functions | Protected Member Functions | Private Attributes | List of all members
itk::Statistics::GaussianMixtureModelComponent< TSample > Class Template Reference

#include <itkGaussianMixtureModelComponent.h>

+ Inheritance diagram for itk::Statistics::GaussianMixtureModelComponent< TSample >:
+ Collaboration diagram for itk::Statistics::GaussianMixtureModelComponent< TSample >:

Detailed Description

template<typename TSample>
class itk::Statistics::GaussianMixtureModelComponent< TSample >

is a component (derived from MixtureModelComponentBase) for Gaussian class. This class is used in ExpectationMaximizationMixtureModelEstimator.

On every iteration of EM estimation, this class's GenerateData method is called to compute the new distribution parameters.

Recent API changes: The static const macro to get the length of a measurement vector, MeasurementVectorSize has been removed to allow the length of a measurement vector to be specified at run time. It is now obtained at run time from the sample set as input. Please use the function GetMeasurementVectorSize() to get the length.

See Also
MixtureModelComponentBase, ExpectationMaximizationMixtureModelEstimator
Examples:
Examples/Statistics/ExpectationMaximizationMixtureModelEstimator.cxx, and WikiExamples/Statistics/ExpectationMaximizationMixtureModelEstimator_2D.cxx.

Definition at line 50 of file itkGaussianMixtureModelComponent.h.

Public Types

typedef SmartPointer< const SelfConstPointer
 
typedef
WeightedCovarianceSampleFilter
< TSample > 
CovarianceEstimatorType
 
typedef
CovarianceEstimatorType::OutputType 
CovarianceMatrixType
 
typedef
WeightedMeanSampleFilter
< TSample > 
MeanEstimatorType
 
typedef
MeanEstimatorType::OutputType 
MeanVectorType
 
typedef
Superclass::MeasurementVectorSizeType 
MeasurementVectorSizeType
 
typedef
Superclass::MeasurementVectorType 
MeasurementVectorType
 
typedef
Superclass::MembershipFunctionType 
MembershipFunctionType
 
typedef
GaussianMembershipFunction
< MeasurementVectorType
NativeMembershipFunctionType
 
typedef Superclass::ParametersType ParametersType
 
typedef SmartPointer< SelfPointer
 
typedef
GaussianMixtureModelComponent 
Self
 
typedef
MixtureModelComponentBase
< TSample > 
Superclass
 
typedef Superclass::WeightArrayType WeightArrayType
 
- Public Types inherited from itk::Statistics::MixtureModelComponentBase< TSample >
typedef SmartPointer< const SelfConstPointer
 
typedef
TSample::MeasurementVectorSizeType 
MeasurementVectorSizeType
 
typedef
TSample::MeasurementVectorType 
MeasurementVectorType
 
typedef MembershipFunctionBase
< MeasurementVectorType
MembershipFunctionType
 
typedef Array< double > ParametersType
 
typedef SmartPointer< SelfPointer
 
typedef MixtureModelComponentBase Self
 
typedef Object Superclass
 
typedef Array< double > WeightArrayType
 
- Public Types inherited from itk::Object
typedef SmartPointer< const SelfConstPointer
 
typedef SmartPointer< SelfPointer
 
typedef Object Self
 
typedef LightObject Superclass
 
- Public Types inherited from itk::LightObject
typedef SmartPointer< const SelfConstPointer
 
typedef SmartPointer< SelfPointer
 
typedef LightObject Self
 

Public Member Functions

void SetParameters (const ParametersType &parameters) override
 
void SetSample (const TSample *sample) override
 
- Public Member Functions inherited from itk::Statistics::MixtureModelComponentBase< TSample >
void AreParametersModified (bool flag)
 
bool AreParametersModified ()
 
double Evaluate (MeasurementVectorType &measurements)
 
virtual ParametersType GetFullParameters ()
 
MembershipFunctionTypeGetMembershipFunction ()
 
double GetMinimalParametersChange ()
 
const TSample * GetSample () const
 
double GetWeight (unsigned int index) const
 
virtual const WeightArrayTypeGetWeights () const
 
void SetMinimalParametersChange (double change)
 
virtual void SetParameters (const ParametersType &parameters)
 
void SetWeight (unsigned int index, double value)
 
virtual void Update ()
 
- Public Member Functions inherited from itk::Object
unsigned long AddObserver (const EventObject &event, Command *)
 
unsigned long AddObserver (const EventObject &event, Command *) const
 
virtual void DebugOff () const
 
virtual void DebugOn () const
 
CommandGetCommand (unsigned long tag)
 
bool GetDebug () const
 
MetaDataDictionaryGetMetaDataDictionary ()
 
const MetaDataDictionaryGetMetaDataDictionary () const
 
virtual ModifiedTimeType GetMTime () const
 
virtual const TimeStampGetTimeStamp () const
 
bool HasObserver (const EventObject &event) const
 
void InvokeEvent (const EventObject &)
 
void InvokeEvent (const EventObject &) const
 
virtual void Modified () const
 
virtual void Register () const override
 
void RemoveAllObservers ()
 
void RemoveObserver (unsigned long tag)
 
void SetDebug (bool debugFlag) const
 
void SetMetaDataDictionary (const MetaDataDictionary &rhs)
 
virtual void SetReferenceCount (int) override
 
virtual void UnRegister () const noexceptoverride
 
virtual void SetObjectName (std::string _arg)
 
virtual const std::string & GetObjectName () const
 
- Public Member Functions inherited from itk::LightObject
virtual void Delete ()
 
virtual int GetReferenceCount () const
 
 itkCloneMacro (Self)
 
void Print (std::ostream &os, Indent indent=0) const
 

Protected Member Functions

double CalculateParametersChange ()
 
 GaussianMixtureModelComponent ()
 
void GenerateData () override
 
void PrintSelf (std::ostream &os, Indent indent) const override
 
virtual ~GaussianMixtureModelComponent () override
 
- Protected Member Functions inherited from itk::Statistics::MixtureModelComponentBase< TSample >
 MixtureModelComponentBase ()
 
void SetMembershipFunction (MembershipFunctionType *function)
 
virtual ~MixtureModelComponentBase () override
 
- Protected Member Functions inherited from itk::Object
 Object ()
 
bool PrintObservers (std::ostream &os, Indent indent) const
 
virtual void SetTimeStamp (const TimeStamp &time)
 
virtual ~Object () override
 
- Protected Member Functions inherited from itk::LightObject
virtual LightObject::Pointer InternalClone () const
 
 LightObject ()
 
virtual void PrintHeader (std::ostream &os, Indent indent) const
 
virtual void PrintTrailer (std::ostream &os, Indent indent) const
 
virtual ~LightObject ()
 

Private Attributes

CovarianceEstimatorType::MatrixType m_Covariance
 
CovarianceEstimatorType::Pointer m_CovarianceEstimator
 
NativeMembershipFunctionType::Pointer m_GaussianMembershipFunction
 
MeanEstimatorType::MeasurementVectorType m_Mean
 
MeanEstimatorType::Pointer m_MeanEstimator
 
virtual const char * GetNameOfClass () const
 
virtual ::itk::LightObject::Pointer CreateAnother () const
 
static Pointer New ()
 

Additional Inherited Members

- Static Public Member Functions inherited from itk::Object
static bool GetGlobalWarningDisplay ()
 
static void GlobalWarningDisplayOff ()
 
static void GlobalWarningDisplayOn ()
 
static Pointer New ()
 
static void SetGlobalWarningDisplay (bool flag)
 
- Static Public Member Functions inherited from itk::LightObject
static void BreakOnError ()
 
static Pointer New ()
 
- Protected Attributes inherited from itk::LightObject
AtomicInt< int > m_ReferenceCount
 

Member Typedef Documentation

template<typename TSample >
typedef SmartPointer< const Self > itk::Statistics::GaussianMixtureModelComponent< TSample >::ConstPointer

Definition at line 58 of file itkGaussianMixtureModelComponent.h.

Definition at line 79 of file itkGaussianMixtureModelComponent.h.

Type of the covariance matrix

Definition at line 85 of file itkGaussianMixtureModelComponent.h.

template<typename TSample >
typedef WeightedMeanSampleFilter< TSample > itk::Statistics::GaussianMixtureModelComponent< TSample >::MeanEstimatorType

Types of the mean and the covariance calculator that will update this component's distribution parameters

Definition at line 78 of file itkGaussianMixtureModelComponent.h.

Type of the mean vector

Definition at line 82 of file itkGaussianMixtureModelComponent.h.

template<typename TSample >
typedef Superclass::MeasurementVectorSizeType itk::Statistics::GaussianMixtureModelComponent< TSample >::MeasurementVectorSizeType

Definition at line 67 of file itkGaussianMixtureModelComponent.h.

template<typename TSample >
typedef Superclass::MeasurementVectorType itk::Statistics::GaussianMixtureModelComponent< TSample >::MeasurementVectorType

Typedefs from the superclass

Definition at line 62 of file itkGaussianMixtureModelComponent.h.

template<typename TSample >
typedef Superclass::MembershipFunctionType itk::Statistics::GaussianMixtureModelComponent< TSample >::MembershipFunctionType

Definition at line 68 of file itkGaussianMixtureModelComponent.h.

Type of the membership function. Gaussian density function

Definition at line 74 of file itkGaussianMixtureModelComponent.h.

template<typename TSample >
typedef Superclass::ParametersType itk::Statistics::GaussianMixtureModelComponent< TSample >::ParametersType

Definition at line 70 of file itkGaussianMixtureModelComponent.h.

template<typename TSample >
typedef SmartPointer< Self > itk::Statistics::GaussianMixtureModelComponent< TSample >::Pointer

Definition at line 57 of file itkGaussianMixtureModelComponent.h.

Standard class typedefs.

Definition at line 55 of file itkGaussianMixtureModelComponent.h.

template<typename TSample >
typedef MixtureModelComponentBase< TSample > itk::Statistics::GaussianMixtureModelComponent< TSample >::Superclass

Definition at line 56 of file itkGaussianMixtureModelComponent.h.

template<typename TSample >
typedef Superclass::WeightArrayType itk::Statistics::GaussianMixtureModelComponent< TSample >::WeightArrayType

Definition at line 69 of file itkGaussianMixtureModelComponent.h.

Constructor & Destructor Documentation

template<typename TSample >
itk::Statistics::GaussianMixtureModelComponent< TSample >::GaussianMixtureModelComponent ( )
protected
template<typename TSample >
virtual itk::Statistics::GaussianMixtureModelComponent< TSample >::~GaussianMixtureModelComponent ( )
inlineoverrideprotectedvirtual

Definition at line 95 of file itkGaussianMixtureModelComponent.h.

Member Function Documentation

template<typename TSample >
double itk::Statistics::GaussianMixtureModelComponent< TSample >::CalculateParametersChange ( )
protected

Returns the sum of squared changes in parameters between iterations

template<typename TSample >
virtual::itk::LightObject::Pointer itk::Statistics::GaussianMixtureModelComponent< TSample >::CreateAnother ( ) const
virtual

Standard Macros

Reimplemented from itk::Object.

template<typename TSample >
void itk::Statistics::GaussianMixtureModelComponent< TSample >::GenerateData ( )
overrideprotectedvirtual

Computes the new distribution parameters

Implements itk::Statistics::MixtureModelComponentBase< TSample >.

template<typename TSample >
virtual const char* itk::Statistics::GaussianMixtureModelComponent< TSample >::GetNameOfClass ( ) const
virtual

Standard Macros

Reimplemented from itk::Statistics::MixtureModelComponentBase< TSample >.

template<typename TSample >
static Pointer itk::Statistics::GaussianMixtureModelComponent< TSample >::New ( )
static

Standard Macros

template<typename TSample >
void itk::Statistics::GaussianMixtureModelComponent< TSample >::PrintSelf ( std::ostream &  os,
Indent  indent 
) const
overrideprotectedvirtual

Methods invoked by Print() to print information about the object including superclasses. Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.

Reimplemented from itk::Statistics::MixtureModelComponentBase< TSample >.

template<typename TSample >
void itk::Statistics::GaussianMixtureModelComponent< TSample >::SetParameters ( const ParametersType parameters)
override

Sets the component's distribution parameters.

template<typename TSample >
void itk::Statistics::GaussianMixtureModelComponent< TSample >::SetSample ( const TSample *  sample)
overridevirtual

Sets the input sample

Reimplemented from itk::Statistics::MixtureModelComponentBase< TSample >.

Member Data Documentation

template<typename TSample >
CovarianceEstimatorType::MatrixType itk::Statistics::GaussianMixtureModelComponent< TSample >::m_Covariance
private

Definition at line 110 of file itkGaussianMixtureModelComponent.h.

template<typename TSample >
CovarianceEstimatorType::Pointer itk::Statistics::GaussianMixtureModelComponent< TSample >::m_CovarianceEstimator
private

Definition at line 114 of file itkGaussianMixtureModelComponent.h.

template<typename TSample >
NativeMembershipFunctionType::Pointer itk::Statistics::GaussianMixtureModelComponent< TSample >::m_GaussianMembershipFunction
private

Definition at line 106 of file itkGaussianMixtureModelComponent.h.

template<typename TSample >
MeanEstimatorType::MeasurementVectorType itk::Statistics::GaussianMixtureModelComponent< TSample >::m_Mean
private

Definition at line 108 of file itkGaussianMixtureModelComponent.h.

template<typename TSample >
MeanEstimatorType::Pointer itk::Statistics::GaussianMixtureModelComponent< TSample >::m_MeanEstimator
private

Definition at line 112 of file itkGaussianMixtureModelComponent.h.


The documentation for this class was generated from the following file: