ITK
4.2.0
Insight Segmentation and Registration Toolkit
|
#include <itkGradientDescentOptimizer.h>
Public Types | |
typedef SmartPointer< const Self > | ConstPointer |
typedef SmartPointer< Self > | Pointer |
typedef GradientDescentOptimizer | Self |
enum | StopConditionType { MaximumNumberOfIterations, MetricError } |
typedef SingleValuedNonLinearOptimizer | Superclass |
Public Types inherited from itk::SingleValuedNonLinearOptimizer | |
typedef CostFunctionType::Pointer | CostFunctionPointer |
typedef SingleValuedCostFunction | CostFunctionType |
typedef CostFunctionType::DerivativeType | DerivativeType |
typedef CostFunctionType::MeasureType | MeasureType |
typedef Superclass::ParametersType | ParametersType |
Public Types inherited from itk::NonLinearOptimizer | |
typedef Superclass::ScalesType | ScalesType |
Public Types inherited from itk::Optimizer | |
Public Types inherited from itk::Object | |
Public Types inherited from itk::LightObject |
Public Member Functions | |
virtual void | AdvanceOneStep (void) |
virtual ::itk::LightObject::Pointer | CreateAnother (void) const |
virtual SizeValueType | GetCurrentIteration () const |
virtual const double & | GetLearningRate () |
virtual const char * | GetNameOfClass () const |
virtual const SizeValueType & | GetNumberOfIterations () |
virtual const double & | GetValue () |
void | ResumeOptimization (void) |
virtual void | SetLearningRate (double _arg) |
virtual void | SetNumberOfIterations (SizeValueType _arg) |
void | StartOptimization (void) |
void | StopOptimization (void) |
virtual const bool & | GetMaximize () |
virtual void | SetMaximize (bool _arg) |
virtual void | MaximizeOn () |
virtual void | MaximizeOff () |
bool | GetMinimize () const |
void | SetMinimize (bool v) |
void | MinimizeOn () |
void | MinimizeOff () |
virtual const StopConditionType & | GetStopCondition () |
const std::string | GetStopConditionDescription () const |
Public Member Functions inherited from itk::SingleValuedNonLinearOptimizer | |
virtual const CostFunctionType * | GetCostFunction () |
MeasureType | GetValue (const ParametersType ¶meters) const |
virtual void | SetCostFunction (CostFunctionType *costFunction) |
Static Public Member Functions | |
static Pointer | New () |
Protected Member Functions inherited from itk::SingleValuedNonLinearOptimizer | |
SingleValuedNonLinearOptimizer () | |
virtual | ~SingleValuedNonLinearOptimizer () |
NonLinearOptimizer () | |
virtual | ~NonLinearOptimizer () |
Protected Member Functions inherited from itk::Optimizer | |
Optimizer () | |
virtual void | SetCurrentPosition (const ParametersType ¶m) |
virtual | ~Optimizer () |
Protected Member Functions inherited from itk::Object | |
Object () | |
bool | PrintObservers (std::ostream &os, Indent indent) const |
virtual void | SetTimeStamp (const TimeStamp &time) |
virtual | ~Object () |
Protected Member Functions inherited from itk::LightObject | |
virtual LightObject::Pointer | InternalClone () const |
LightObject () | |
virtual void | PrintHeader (std::ostream &os, Indent indent) const |
virtual void | PrintTrailer (std::ostream &os, Indent indent) const |
virtual | ~LightObject () |
Protected Attributes | |
DerivativeType | m_Gradient |
double | m_LearningRate |
bool | m_Maximize |
Protected Attributes inherited from itk::SingleValuedNonLinearOptimizer | |
CostFunctionPointer | m_CostFunction |
Private Member Functions | |
GradientDescentOptimizer (const Self &) | |
void | operator= (const Self &) |
Private Attributes | |
SizeValueType | m_CurrentIteration |
SizeValueType | m_NumberOfIterations |
bool | m_Stop |
StopConditionType | m_StopCondition |
std::ostringstream | m_StopConditionDescription |
double | m_Value |
virtual const DerivativeType & | GetGradient () |
GradientDescentOptimizer () | |
virtual | ~GradientDescentOptimizer () |
void | PrintSelf (std::ostream &os, Indent indent) const |
Additional Inherited Members |
Implement a gradient descent optimizer.
GradientDescentOptimizer implements a simple gradient descent optimizer. At each iteration the current position is updated according to
The learning rate is a fixed scalar defined via SetLearningRate(). The optimizer steps through a user defined number of iterations; no convergence checking is done.
Additionally, user can scale each component of the df / dp but setting a scaling vector using method SetScale().
Definition at line 50 of file itkGradientDescentOptimizer.h.
typedef SmartPointer< const Self > itk::GradientDescentOptimizer::ConstPointer |
Reimplemented from itk::SingleValuedNonLinearOptimizer.
Reimplemented in itk::QuaternionRigidTransformGradientDescentOptimizer.
Definition at line 58 of file itkGradientDescentOptimizer.h.
Reimplemented from itk::SingleValuedNonLinearOptimizer.
Reimplemented in itk::QuaternionRigidTransformGradientDescentOptimizer.
Definition at line 57 of file itkGradientDescentOptimizer.h.
Standard class typedefs.
Reimplemented from itk::SingleValuedNonLinearOptimizer.
Reimplemented in itk::QuaternionRigidTransformGradientDescentOptimizer.
Definition at line 55 of file itkGradientDescentOptimizer.h.
Reimplemented from itk::SingleValuedNonLinearOptimizer.
Reimplemented in itk::QuaternionRigidTransformGradientDescentOptimizer.
Definition at line 56 of file itkGradientDescentOptimizer.h.
Codes of stopping conditions
Definition at line 67 of file itkGradientDescentOptimizer.h.
|
protected |
Get Gradient condition.
|
inlineprotectedvirtual |
Get Gradient condition.
Definition at line 127 of file itkGradientDescentOptimizer.h.
|
private |
|
virtual |
Advance one step following the gradient direction.
Reimplemented in itk::QuaternionRigidTransformGradientDescentOptimizer.
|
virtual |
Create an object from an instance, potentially deferring to a factory. This method allows you to create an instance of an object that is exactly the same type as the referring object. This is useful in cases where an object has been cast back to a base class.
Reimplemented from itk::SingleValuedNonLinearOptimizer.
Reimplemented in itk::QuaternionRigidTransformGradientDescentOptimizer.
|
virtual |
Get the current iteration number.
|
virtual |
Get Gradient condition.
|
virtual |
Get the learning rate.
|
virtual |
Methods to configure the cost function.
|
inline |
Methods to configure the cost function.
Definition at line 76 of file itkGradientDescentOptimizer.h.
|
virtual |
Run-time type information (and related methods).
Reimplemented from itk::SingleValuedNonLinearOptimizer.
Reimplemented in itk::QuaternionRigidTransformGradientDescentOptimizer.
|
virtual |
Get the number of iterations.
|
virtual |
Get Stop condition.
|
virtual |
Get Stop condition.
Reimplemented from itk::Optimizer.
|
virtual |
Get the current value.
|
virtual |
Methods to configure the cost function.
|
virtual |
Methods to configure the cost function.
|
inline |
Methods to configure the cost function.
Definition at line 82 of file itkGradientDescentOptimizer.h.
|
inline |
Methods to configure the cost function.
Definition at line 80 of file itkGradientDescentOptimizer.h.
|
static |
Method for creation through the object factory.
Reimplemented from itk::SingleValuedNonLinearOptimizer.
Reimplemented in itk::QuaternionRigidTransformGradientDescentOptimizer.
|
private |
Types inherited from the superclass
Reimplemented from itk::SingleValuedNonLinearOptimizer.
Reimplemented in itk::QuaternionRigidTransformGradientDescentOptimizer.
|
protectedvirtual |
Get Gradient condition.
Reimplemented from itk::SingleValuedNonLinearOptimizer.
void itk::GradientDescentOptimizer::ResumeOptimization | ( | void | ) |
Resume previously stopped optimization with current parameters
|
virtual |
Set the learning rate.
|
virtual |
Methods to configure the cost function.
|
inline |
Methods to configure the cost function.
Definition at line 78 of file itkGradientDescentOptimizer.h.
|
virtual |
Set the number of iterations.
|
virtual |
Start optimization.
Reimplemented from itk::Optimizer.
void itk::GradientDescentOptimizer::StopOptimization | ( | void | ) |
Stop optimization.
|
private |
Definition at line 145 of file itkGradientDescentOptimizer.h.
|
protected |
Definition at line 132 of file itkGradientDescentOptimizer.h.
|
protected |
Definition at line 136 of file itkGradientDescentOptimizer.h.
|
protected |
Definition at line 134 of file itkGradientDescentOptimizer.h.
|
private |
Definition at line 144 of file itkGradientDescentOptimizer.h.
|
private |
Definition at line 141 of file itkGradientDescentOptimizer.h.
|
private |
Definition at line 143 of file itkGradientDescentOptimizer.h.
|
private |
Definition at line 146 of file itkGradientDescentOptimizer.h.
|
private |
Definition at line 142 of file itkGradientDescentOptimizer.h.