![]() |
ITK
4.4.0
Insight Segmentation and Registration Toolkit
|
#include <itkRegularStepGradientDescentOptimizer.h>
Implement a gradient descent optimizer.
Definition at line 32 of file itkRegularStepGradientDescentOptimizer.h.
Public Member Functions | |
virtual ::itk::LightObject::Pointer | CreateAnother (void) const |
virtual const char * | GetNameOfClass () const |
![]() | |
virtual const std::string | GetStopConditionDescription () const |
void | ResumeOptimization (void) |
void | StartOptimization (void) |
void | StopOptimization (void) |
virtual void | SetMaximize (bool _arg) |
virtual const bool & | GetMaximize () |
virtual void | MaximizeOn () |
virtual void | MaximizeOff () |
bool | GetMinimize () const |
void | SetMinimize (bool v) |
void | MinimizeOn (void) |
void | MinimizeOff (void) |
virtual void | SetMaximumStepLength (double _arg) |
virtual void | SetMinimumStepLength (double _arg) |
virtual void | SetRelaxationFactor (double _arg) |
virtual void | SetNumberOfIterations (SizeValueType _arg) |
virtual void | SetGradientMagnitudeTolerance (double _arg) |
virtual const double & | GetCurrentStepLength () |
virtual const double & | GetMaximumStepLength () |
virtual const double & | GetMinimumStepLength () |
virtual const double & | GetRelaxationFactor () |
virtual const SizeValueType & | GetNumberOfIterations () |
virtual const double & | GetGradientMagnitudeTolerance () |
virtual unsigned int | GetCurrentIteration () const |
virtual const StopConditionType & | GetStopCondition () |
virtual const MeasureType & | GetValue () |
virtual const DerivativeType & | GetGradient () |
![]() | |
virtual ::itk::LightObject::Pointer | CreateAnother (void) const |
virtual const CostFunctionType * | GetCostFunction () const |
virtual CostFunctionType * | GetModifiableCostFunction () |
MeasureType | GetValue (const ParametersType ¶meters) const |
virtual void | SetCostFunction (CostFunctionType *costFunction) |
Static Public Member Functions | |
static Pointer | New () |
![]() | |
static Pointer | New () |
![]() | |
static Pointer | New () |
![]() | |
static Pointer | New () |
![]() | |
static Pointer | New () |
![]() | |
static bool | GetGlobalWarningDisplay () |
static void | GlobalWarningDisplayOff () |
static void | GlobalWarningDisplayOn () |
static Pointer | New () |
static void | SetGlobalWarningDisplay (bool flag) |
![]() | |
static void | BreakOnError () |
static Pointer | New () |
Protected Member Functions | |
RegularStepGradientDescentOptimizer () | |
virtual void | StepAlongGradient (double factor, const DerivativeType &transformedGradient) |
virtual | ~RegularStepGradientDescentOptimizer () |
![]() | |
virtual void | AdvanceOneStep (void) |
void | PrintSelf (std::ostream &os, Indent indent) const |
RegularStepGradientDescentBaseOptimizer () | |
virtual void | StepAlongGradient (double, const DerivativeType &) |
virtual | ~RegularStepGradientDescentBaseOptimizer () |
![]() | |
void | PrintSelf (std::ostream &os, Indent indent) const |
SingleValuedNonLinearOptimizer () | |
virtual | ~SingleValuedNonLinearOptimizer () |
![]() | |
NonLinearOptimizer () | |
virtual | ~NonLinearOptimizer () |
![]() | |
Optimizer () | |
virtual void | SetCurrentPosition (const ParametersType ¶m) |
virtual | ~Optimizer () |
![]() | |
Object () | |
bool | PrintObservers (std::ostream &os, Indent indent) const |
virtual void | SetTimeStamp (const TimeStamp &time) |
virtual | ~Object () |
![]() | |
virtual LightObject::Pointer | InternalClone () const |
LightObject () | |
virtual void | PrintHeader (std::ostream &os, Indent indent) const |
virtual void | PrintTrailer (std::ostream &os, Indent indent) const |
virtual | ~LightObject () |
Private Member Functions | |
void | operator= (const Self &) |
RegularStepGradientDescentOptimizer (const Self &) | |
Additional Inherited Members | |
![]() | |
typedef int | InternalReferenceCountType |
![]() | |
SizeValueType | m_CurrentIteration |
double | m_CurrentStepLength |
DerivativeType | m_Gradient |
double | m_GradientMagnitudeTolerance |
bool | m_Maximize |
double | m_MaximumStepLength |
double | m_MinimumStepLength |
SizeValueType | m_NumberOfIterations |
DerivativeType | m_PreviousGradient |
double | m_RelaxationFactor |
bool | m_Stop |
StopConditionType | m_StopCondition |
std::ostringstream | m_StopConditionDescription |
MeasureType | m_Value |
typedef SmartPointer< const Self > itk::RegularStepGradientDescentOptimizer::ConstPointer |
Definition at line 40 of file itkRegularStepGradientDescentOptimizer.h.
typedef CostFunctionType::Pointer itk::RegularStepGradientDescentOptimizer::CostFunctionPointer |
Definition at line 51 of file itkRegularStepGradientDescentOptimizer.h.
typedef Superclass::CostFunctionType itk::RegularStepGradientDescentOptimizer::CostFunctionType |
Cost function typedefs.
Definition at line 47 of file itkRegularStepGradientDescentOptimizer.h.
Definition at line 39 of file itkRegularStepGradientDescentOptimizer.h.
Standard class typedefs.
Definition at line 37 of file itkRegularStepGradientDescentOptimizer.h.
typedef RegularStepGradientDescentBaseOptimizer itk::RegularStepGradientDescentOptimizer::Superclass |
Definition at line 38 of file itkRegularStepGradientDescentOptimizer.h.
|
inlineprotected |
Definition at line 54 of file itkRegularStepGradientDescentOptimizer.h.
|
inlineprotectedvirtual |
Definition at line 55 of file itkRegularStepGradientDescentOptimizer.h.
|
private |
|
virtual |
Create an object from an instance, potentially deferring to a factory. This method allows you to create an instance of an object that is exactly the same type as the referring object. This is useful in cases where an object has been cast back to a base class.
Reimplemented from itk::RegularStepGradientDescentBaseOptimizer.
|
virtual |
Run-time type information (and related methods).
Reimplemented from itk::RegularStepGradientDescentBaseOptimizer.
|
static |
Method for creation through the object factory.
|
private |
|
protectedvirtual |
Advance one step along the corrected gradient taking into account the steplength represented by factor. This method is invoked by AdvanceOneStep. It is expected to be overrided by optimization methods in non-vector spaces