ITK
4.9.0
Insight Segmentation and Registration Toolkit
Main Page
Related Pages
Modules
Namespaces
Classes
Files
Examples
Examples/RegistrationITKv4/ImageRegistration1.cxx
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySliceBorder20.png}
// INPUTS: {BrainProtonDensitySliceShifted13x17y.png}
// OUTPUTS: {ImageRegistration1Output.png}
// OUTPUTS: {ImageRegistration1DifferenceAfter.png}
// OUTPUTS: {ImageRegistration1DifferenceBefore.png}
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// This example illustrates the use of the image registration framework in
// Insight. It should be read as a ``Hello World'' for ITK registration.
// Instead of means to an end, this example should be read as a basic
// introduction to the elements typically involved when solving a problem
// of image registration.
//
// \index{itk::Image!Instantiation}
// \index{itk::Image!Header}
//
// A registration method requires the following set of components: two input
// images, a transform, a metric and an optimizer. Some of these components
// are parameterized by the image type for which the registration is intended.
// The following header files provide declarations of common types used for
// these components.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "
itkImageRegistrationMethodv4.h
"
#include "
itkTranslationTransform.h
"
#include "
itkMeanSquaresImageToImageMetricv4.h
"
#include "
itkRegularStepGradientDescentOptimizerv4.h
"
// Software Guide : EndCodeSnippet
#include "
itkImageFileReader.h
"
#include "
itkImageFileWriter.h
"
#include "
itkResampleImageFilter.h
"
#include "
itkCastImageFilter.h
"
#include "
itkRescaleIntensityImageFilter.h
"
#include "
itkSubtractImageFilter.h
"
class
CommandIterationUpdate :
public
itk::Command
{
public
:
typedef
CommandIterationUpdate
Self
;
typedef
itk::Command
Superclass
;
typedef
itk::SmartPointer<Self>
Pointer
;
itkNewMacro( Self );
protected
:
CommandIterationUpdate() {};
public
:
typedef
itk::RegularStepGradientDescentOptimizerv4<double>
OptimizerType;
typedef
const
OptimizerType* OptimizerPointer;
void
Execute
(
itk::Object
*caller,
const
itk::EventObject
& event) ITK_OVERRIDE
{
Execute
( (
const
itk::Object
*)caller, event);
}
void
Execute
(
const
itk::Object
*
object
,
const
itk::EventObject
& event) ITK_OVERRIDE
{
OptimizerPointer optimizer =
static_cast<
OptimizerPointer
>
( object );
if
( ! itk::IterationEvent().CheckEvent( &event ) )
{
return
;
}
std::cout << optimizer->GetCurrentIteration() <<
" = "
;
std::cout << optimizer->GetValue() <<
" : "
;
std::cout << optimizer->GetCurrentPosition() << std::endl;
}
};
int
main(
int
argc,
char
*argv[] )
{
if
( argc < 4 )
{
std::cerr <<
"Missing Parameters "
<< std::endl;
std::cerr <<
"Usage: "
<< argv[0];
std::cerr <<
" fixedImageFile movingImageFile "
;
std::cerr <<
"outputImagefile [differenceImageAfter]"
;
std::cerr <<
"[differenceImageBefore] [useEstimator]"
<< std::endl;
return
EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// The type of each registration component should
// be instantiated first. We start by selecting the image
// dimension and the types to be used for representing image pixels.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const
unsigned
int
Dimension = 2;
typedef
float
PixelType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The types of the input images are instantiated by the following lines.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
itk::Image< PixelType, Dimension >
FixedImageType;
typedef
itk::Image< PixelType, Dimension >
MovingImageType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The transform that will map the fixed image space into the moving image
// space is defined below.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
itk::TranslationTransform< double, Dimension >
TransformType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// An optimizer is required to explore the parameter space of the transform
// in search of optimal values of the metric.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
itk::RegularStepGradientDescentOptimizerv4<double>
OptimizerType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The metric will compare how well the two images match each other. Metric
// types are usually templated over the image types as seen in
// the following type declaration.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
itk::MeanSquaresImageToImageMetricv4
<
FixedImageType,
MovingImageType > MetricType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The registration method type is instantiated using the types of the
// fixed and moving images as well as the output transform type. This class
// is responsible for interconnecting all the components that we have described so far.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
itk::ImageRegistrationMethodv4
<
FixedImageType,
MovingImageType,
TransformType > RegistrationType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Each one of the registration components is created using its
// \code{New()} method and is assigned to its respective
// \doxygen{SmartPointer}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
MetricType::Pointer metric = MetricType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
RegistrationType::Pointer registration = RegistrationType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Each component is now connected to the instance of the registration method.
//
// \index{itk::RegistrationMethodv4!SetMetric()}
// \index{itk::RegistrationMethodv4!SetOptimizer()}
// \index{itk::RegistrationMethodv4!SetFixedImage()}
// \index{itk::RegistrationMethodv4!SetMovingImage()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
registration->SetMetric( metric );
registration->SetOptimizer( optimizer );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In this example the transform object does not need to be created and passed to the
// registration method like above since the registration filter will instantiate an internal
// transform object using the transform type that is passed to it as a template parameter.
//
// Metric needs an interpolator to evaluate the intensities of the fixed and
// moving images at non-grid positions. The types of fixed and moving interpolators
// are declared here.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
itk::LinearInterpolateImageFunction
<
FixedImageType,
double
> FixedLinearInterpolatorType;
typedef
itk::LinearInterpolateImageFunction
<
MovingImageType,
double
> MovingLinearInterpolatorType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then, fixed and moving interpolators are created and passed to the metric.
// Since linear interpolators are used as default, we could skip the following
// step in this example.
//
// \index{itk::MeanSquaresImageToImageMetricv4!SetFixedInterpolator()}
// \index{itk::MeanSquaresImageToImageMetricv4!SetMovingInterpolator()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
FixedLinearInterpolatorType::Pointer fixedInterpolator =
FixedLinearInterpolatorType::New();
MovingLinearInterpolatorType::Pointer movingInterpolator =
MovingLinearInterpolatorType::New();
metric->SetFixedInterpolator( fixedInterpolator );
metric->SetMovingInterpolator( movingInterpolator );
// Software Guide : EndCodeSnippet
typedef
itk::ImageFileReader< FixedImageType >
FixedImageReaderType;
typedef
itk::ImageFileReader< MovingImageType >
MovingImageReaderType;
FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New();
MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName( argv[1] );
movingImageReader->SetFileName( argv[2] );
// Software Guide : BeginLatex
//
// In this example, the fixed and moving images are read from files. This
// requires the \doxygen{ImageRegistrationMethodv4} to acquire its inputs
// from the output of the readers.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
registration->SetFixedImage( fixedImageReader->GetOutput() );
registration->SetMovingImage( movingImageReader->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now the registration process should be initialized. ITKv4 registration
// framework provides initial transforms for both fixed and moving images.
// These transforms can be used to setup an initial known correction of the
// misalignment between the virtual domain and fixed/moving image spaces.
// In this particular case, a translation transform is being used for
// initialization of the moving image space.
// The array of parameters for the initial moving transform is simply composed
// of the translation values along each dimension. Setting the values of the
// parameters to zero initializes the transform to an \emph{Identity} transform.
// Note that the array constructor requires the number of elements to be passed
// as an argument.
//
// \index{itk::TranslationTransform!GetNumberOfParameters()}
// \index{itk::RegistrationMethodv4!SetMovingInitialTransform()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
TransformType::Pointer movingInitialTransform = TransformType::New();
TransformType::ParametersType initialParameters(
movingInitialTransform->GetNumberOfParameters() );
initialParameters[0] = 0.0;
// Initial offset in mm along X
initialParameters[1] = 0.0;
// Initial offset in mm along Y
movingInitialTransform->SetParameters( initialParameters );
registration->SetMovingInitialTransform( movingInitialTransform );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In the registration filter this moving initial transform will be added to a
// composite transform that already includes an instantiation of the output optimizable
// transform; then, the resultant composite transform will be used by the optimizer to
// evaluate the metric values at each iteration.
//
// Despite this, the fixed initial transform does not contribute to the
// optimization process. It is only used to access the fixed image from the
// virtual image space where the metric evaluation happens.
//
// Virtual images are a new concept added to the ITKv4 registration framework,
// which potentially lets us to do the registration process in a physical domain
// totally different from the fixed and moving image domains.
// In fact, the region over which metric evaluation is performed is called virtual image
// domain. This domain defines the resolution at which the evaluation is performed,
// as well as the physical coordinate system.
//
// The virtual reference domain is taken from the ``virtual image'' buffered region, and
// the input images should be accessed from this reference space using the fixed and moving
// initial transforms.
//
// The legacy intuitive registration framework can be considered as a special
// case where the virtual domain is the same as the fixed image domain. As this case
// practically happens in most of the real life applications, the virtual image is set
// to be the same as the fixed image by default. However, the user can define the virtual
// domain differently than the fixed image domain by calling either \code{SetVirtualDomain}
// or \code{SetVirtualDomainFromImage}.
//
// In this example, like the most examples of this chapter, the virtual image is considered
// the same as the fixed image. Since the registration process happens in the fixed image
// physical domain, the fixed initial transform maintains its default value of identity and
// does not need to be set.
//
// However, a ``Hello World!'' example should show all the basics, so
// all the registration components are explicity set here.
//
// In the next section of this chapter, you will get a better understanding
// from behind the scenes of the registration process when the initial fixed
// transform is not identity.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
TransformType::Pointer identityTransform = TransformType::New();
identityTransform->SetIdentity();
registration->SetFixedInitialTransform( identityTransform );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Note that the above process shows only one way of initializing the registration
// configuration. Another option is to initialize the output optimizable transform directly.
// In this approach, a transform object is created, initialized, and then passed to
// the registration method via \code{SetInitialTransform()}. This approach is shown in
// section~\ref{sec:RigidRegistrationIn2D}.
//
// At this point the registration method is ready for execution. The
// optimizer is the component that drives the execution of the
// registration. However, the ImageRegistrationMethodv4 class
// orchestrates the ensemble to make sure that everything is in place
// before control is passed to the optimizer.
//
// It is usually desirable to fine tune the parameters of the optimizer.
// Each optimizer has particular parameters that must be interpreted in the
// context of the optimization strategy it implements. The optimizer used in
// this example is a variant of gradient descent that attempts to prevent it
// from taking steps that are too large. At each iteration, this optimizer
// will take a step along the direction of the \doxygen{ImageToImageMetricv4}
// derivative. Each time the direction of the derivative abruptly changes,
// the optimizer assumes that a local extrema has been passed and reacts by
// reducing the step length by a relaxation factor. The reducing factor
// should have a value between 0 and 1. This factor is set to 0.5 by default,
// and it can be changed to a different value via \code{SetRelaxationFactor()}.
// Also, the default value for the initial step length is 1, and this value can
// be changed manually with the method \code{SetLearningRate()}.
//
// In addition to manual settings, the initial step size can also be estimated
// automatically, either at each iteration or only at the first iteration,
// by assigning a ScalesEstimator (as will be seen in later examples).
//
// After several reductions of the step length, the optimizer may be moving
// in a very restricted area of the transform parameter space. By the method
// \code{SetMinimumStepLength()}, the user can define how small the step length
// should be to consider convergence to have been reached. This is equivalent
// to defining the precision with which the final transform should be known.
// User can also set some other stop criteria manually like maximum number of
// iterations.
//
// In other gradient descent-based optimizers of the ITKv4 framework, such as
// \doxygen{GradientDescentLineSearchOptimizerv4} and \doxygen{ConjugateGradientLineSearchOptimizerv4},
// the convergence criteria are set via \code{SetMinimumConvergenceValue()} which is computed based on
// the results of the last few iterations. The number of iterations involved in computations
// are defined by the convergence window size via \code{SetConvergenceWindowSize()} which is shown
// in later examples of this chapter.
//
// Also note that unlike the previous versions, ITKv4 optimizers do not have a ``maximize/minimize''
// option to modify the effect of the metric derivatives. Each assigned metric is assumed to
// return a parameter derivative result that "improves" the optimization.
//
// \index{itk::Gradient\-Descent\-Optimizerv4\-Template!SetLearningRate()}
// \index{itk::Gradient\-Descent\-Optimizerv4\-Template!SetMinimumStepLength()}
// \index{itk::Gradient\-Descent\-Optimizerv4\-Template!SetRelaxationFactor()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
optimizer->SetLearningRate( 4 );
optimizer->SetMinimumStepLength( 0.001 );
optimizer->SetRelaxationFactor( 0.5 );
// Software Guide : EndCodeSnippet
bool
useEstimator =
false
;
if
( argc > 6 )
{
useEstimator = atoi(argv[6]) != 0;
}
if
( useEstimator )
{
typedef
itk::RegistrationParameterScalesFromPhysicalShift<MetricType>
ScalesEstimatorType;
ScalesEstimatorType::Pointer scalesEstimator = ScalesEstimatorType::New();
scalesEstimator->SetMetric( metric );
scalesEstimator->SetTransformForward(
true
);
optimizer->SetScalesEstimator( scalesEstimator );
optimizer->SetDoEstimateLearningRateOnce(
true
);
}
// Software Guide : BeginLatex
//
// In case the optimizer never succeeds reaching the desired
// precision tolerance, it is prudent to establish a limit on the number of
// iterations to be performed. This maximum number is defined with the
// method \code{SetNumberOfIterations()}.
//
// \index{itk::Gradient\-Descent\-Optimizerv4\-Template!SetNumberOfIterations()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
optimizer->SetNumberOfIterations( 200 );
// Software Guide : EndCodeSnippet
// Connect an observer
CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();
optimizer->AddObserver( itk::IterationEvent(), observer );
// Software Guide : BeginLatex
//
// ITKv4 facilitates a multi-level registration framework whereby each stage is
// different in the resolution of its virtual space and the smoothness of the
// fixed and moving images.
// These criteria need to be defined before registration starts. Otherwise,
// the default values will be used.
// In this example, we run a simple registration in one level with no
// space shrinking or smoothing on the input data.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const
unsigned
int
numberOfLevels = 1;
RegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel;
shrinkFactorsPerLevel.SetSize( 1 );
shrinkFactorsPerLevel[0] = 1;
RegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel;
smoothingSigmasPerLevel.SetSize( 1 );
smoothingSigmasPerLevel[0] = 0;
registration->SetNumberOfLevels ( numberOfLevels );
registration->SetSmoothingSigmasPerLevel( smoothingSigmasPerLevel );
registration->SetShrinkFactorsPerLevel( shrinkFactorsPerLevel );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The registration process is triggered by an invocation of the
// \code{Update()} method. If something goes wrong during the
// initialization or execution of the registration an exception will be
// thrown. We should therefore place the \code{Update()} method
// inside a \code{try/catch} block as illustrated in the following lines.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
registration->Update();
std::cout <<
"Optimizer stop condition: "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch
(
itk::ExceptionObject
& err )
{
std::cerr <<
"ExceptionObject caught !"
<< std::endl;
std::cerr << err << std::endl;
return
EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In a real life application, you may attempt to recover from the error by
// taking more effective actions in the catch block. Here we are simply
// printing out a message and then terminating the execution of the program.
//
//
// The result of the registration process is obtained using the \code{GetTransform()}
// method that returns a constant pointer to the output transform.
//
// \index{itk::ImageRegistrationMethodv4!GetTransform()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
TransformType::ConstPointer transform = registration->GetTransform();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In the case of the \doxygen{TranslationTransform}, there is a
// straightforward interpretation of the parameters. Each element of the
// array corresponds to a translation along one spatial dimension.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
TransformType::ParametersType finalParameters = transform->GetParameters();
const
double
TranslationAlongX = finalParameters[0];
const
double
TranslationAlongY = finalParameters[1];
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The optimizer can be queried for the actual number of iterations
// performed to reach convergence. The \code{GetCurrentIteration()}
// method returns this value. A large number of iterations may be an
// indication that the learning rate has been set too small, which
// is undesirable since it results in long computational times.
//
// \index{itk::Gradient\-Descent\-Optimizerv4\-Template!GetCurrentIteration()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const
unsigned
int
numberOfIterations = optimizer->GetCurrentIteration();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The value of the image metric corresponding to the last set of parameters
// can be obtained with the \code{GetValue()} method of the optimizer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const
double
bestValue = optimizer->GetValue();
// Software Guide : EndCodeSnippet
// Print out results
//
std::cout <<
"Result = "
<< std::endl;
std::cout <<
" Translation X = "
<< TranslationAlongX << std::endl;
std::cout <<
" Translation Y = "
<< TranslationAlongY << std::endl;
std::cout <<
" Iterations = "
<< numberOfIterations << std::endl;
std::cout <<
" Metric value = "
<< bestValue << std::endl;
// Software Guide : BeginLatex
//
// Let's execute this example over two of the images provided in
// \code{Examples/Data}:
//
// \begin{itemize}
// \item \code{BrainProtonDensitySliceBorder20.png}
// \item \code{BrainProtonDensitySliceShifted13x17y.png}
// \end{itemize}
//
// The second image is the result of intentionally translating the first
// image by $(13,17)$ millimeters. Both images have unit-spacing and
// are shown in Figure \ref{fig:FixedMovingImageRegistration1}. The
// registration takes 20 iterations and the resulting transform parameters are:
//
// \begin{verbatim}
// Translation X = 13.0012
// Translation Y = 16.9999
// \end{verbatim}
//
// As expected, these values match quite well the misalignment that we
// intentionally introduced in the moving image.
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceBorder20}
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceShifted13x17y}
// \itkcaption[Fixed and Moving images in registration framework]{Fixed and
// Moving image provided as input to the registration method.}
// \label{fig:FixedMovingImageRegistration1}
// \end{figure}
//
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// It is common, as the last step of a registration task, to use the
// resulting transform to map the moving image into the fixed image space.
//
// Before the mapping process, notice that we have not used the direct initialization
// of the output transform in this example, so the parameters of the moving initial
// transform are not reflected in the output parameters of the registration filter.
// Hence, a composite transform is needed to concatenate both initial and output
// transforms together.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
itk::CompositeTransform
<
double,
Dimension > CompositeTransformType;
CompositeTransformType::Pointer outputCompositeTransform =
CompositeTransformType::New();
outputCompositeTransform->AddTransform( movingInitialTransform );
outputCompositeTransform->AddTransform(
registration->GetModifiableTransform() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now the mapping process is easily done with the \doxygen{ResampleImageFilter}.
// Please refer to Section~\ref{sec:ResampleImageFilter} for details on the use
// of this filter. First, a ResampleImageFilter type is instantiated
// using the image types. It is convenient to use the fixed image type as
// the output type since it is likely that the transformed moving image
// will be compared with the fixed image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
itk::ResampleImageFilter
<
MovingImageType,
FixedImageType > ResampleFilterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// A resampling filter is created and the moving image is connected as
// its input.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ResampleFilterType::Pointer resampler = ResampleFilterType::New();
resampler->SetInput( movingImageReader->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The created output composite transform is also passed as input to the
// resampling filter.
//
// \index{itk::ImageRegistrationMethod!Resampling image}
// \index{itk::ImageRegistrationMethod!Pipeline}
// \index{itk::ImageRegistrationMethod!DataObjectDecorator}
// \index{itk::ImageRegistrationMethod!GetOutput()}
// \index{itk::DataObjectDecorator!Use in Registration}
// \index{itk::DataObjectDecorator!Get()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
resampler->SetTransform( outputCompositeTransform );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// As described in Section \ref{sec:ResampleImageFilter}, the
// ResampleImageFilter requires additional parameters to be specified, in
// particular, the spacing, origin and size of the output image. The default
// pixel value is also set to a distinct gray level in order to highlight
// the regions that are mapped outside of the moving image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
resampler->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resampler->SetOutputOrigin( fixedImage->GetOrigin() );
resampler->SetOutputSpacing( fixedImage->GetSpacing() );
resampler->SetOutputDirection( fixedImage->GetDirection() );
resampler->SetDefaultPixelValue( 100 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[width=0.32\textwidth]{ImageRegistration1Output}
// \includegraphics[width=0.32\textwidth]{ImageRegistration1DifferenceBefore}
// \includegraphics[width=0.32\textwidth]{ImageRegistration1DifferenceAfter}
// \itkcaption[HelloWorld registration output images]{Mapped moving image and its
// difference with the fixed image before and after registration}
// \label{fig:ImageRegistration1Output}
// \end{figure}
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// The output of the filter is passed to a writer that will store the
// image in a file. An \doxygen{CastImageFilter} is used to convert the
// pixel type of the resampled image to the final type used by the
// writer. The cast and writer filters are instantiated below.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
unsigned
char
OutputPixelType;
typedef
itk::Image< OutputPixelType, Dimension >
OutputImageType;
typedef
itk::CastImageFilter
<
FixedImageType,
OutputImageType > CastFilterType;
typedef
itk::ImageFileWriter< OutputImageType >
WriterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The filters are created by invoking their \code{New()}
// method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer caster = CastFilterType::New();
// Software Guide : EndCodeSnippet
writer->SetFileName( argv[3] );
// Software Guide : BeginLatex
//
// The filters are connected together and the \code{Update()} method of the
// writer is invoked in order to trigger the execution of the pipeline.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
caster->SetInput( resampler->GetOutput() );
writer->SetInput( caster->GetOutput() );
writer->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[width=\textwidth]{ImageRegistration1Pipeline}
// \itkcaption[Pipeline structure of the registration example]{Pipeline
// structure of the registration example.}
// \label{fig:ImageRegistration1Pipeline}
// \end{figure}
//
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// The fixed image and the transformed moving image can easily be compared
// using the \doxygen{SubtractImageFilter}. This pixel-wise filter computes
// the difference between homologous pixels of its two input images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
itk::SubtractImageFilter
<
FixedImageType,
FixedImageType,
FixedImageType > DifferenceFilterType;
DifferenceFilterType::Pointer difference = DifferenceFilterType::New();
difference->SetInput1( fixedImageReader->GetOutput() );
difference->SetInput2( resampler->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Note that the use of subtraction as a method for comparing the images is
// appropriate here because we chose to represent the images using a pixel
// type \code{float}. A different filter would have been used if the pixel
// type of the images were any of the \code{unsigned} integer types.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// Since the differences between the two images may correspond to very low
// values of intensity, we rescale those intensities with a
// \doxygen{RescaleIntensityImageFilter} in order to make them more visible.
// This rescaling will also make it possible to visualize the negative values
// even if we save the difference image in a file format that only supports
// unsigned pixel values\footnote{This is the case of PNG, BMP, JPEG and
// TIFF among other common file formats.}. We also reduce the
// \code{DefaultPixelValue} to ``1'' in order to prevent that value from
// absorbing the dynamic range of the differences between the two images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef
itk::RescaleIntensityImageFilter
<
FixedImageType,
OutputImageType > RescalerType;
RescalerType::Pointer intensityRescaler = RescalerType::New();
intensityRescaler->SetInput( difference->GetOutput() );
intensityRescaler->SetOutputMinimum( 0 );
intensityRescaler->SetOutputMaximum( 255 );
resampler->SetDefaultPixelValue( 1 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Its output can be passed to another writer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
WriterType::Pointer writer2 = WriterType::New();
writer2->SetInput( intensityRescaler->GetOutput() );
// Software Guide : EndCodeSnippet
if
( argc > 4 )
{
writer2->SetFileName( argv[4] );
writer2->Update();
}
// Software Guide : BeginLatex
//
// For the purpose of comparison, the difference between the fixed image and
// the moving image before registration can also be computed by simply
// setting the transform to an identity transform. Note that the resampling
// is still necessary because the moving image does not necessarily have the
// same spacing, origin and number of pixels as the fixed image. Therefore a
// pixel-by-pixel operation cannot in general be performed. The resampling
// process with an identity transform will ensure that we have a
// representation of the moving image in the grid of the fixed image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
resampler->SetTransform( identityTransform );
// Software Guide : EndCodeSnippet
if
( argc > 5 )
{
writer2->SetFileName( argv[5] );
writer2->Update();
}
// Software Guide : BeginLatex
//
// The complete pipeline structure of the current example is presented in
// Figure~\ref{fig:ImageRegistration1Pipeline}. The components of the
// registration method are depicted as well. Figure
// \ref{fig:ImageRegistration1Output} (left) shows the result of resampling
// the moving image in order to map it onto the fixed image space. The top
// and right borders of the image appear in the gray level selected with the
// \code{SetDefaultPixelValue()} in the ResampleImageFilter. The center
// image shows the difference between the fixed image and the original
// moving image (i.e. the difference before the registration is
// performed). The right image shows the difference between the fixed image
// and the transformed moving image (i.e. after the registration has
// been performed). Both difference images have been rescaled in intensity
// in order to highlight those pixels where differences exist. Note that
// the final registration is still off by a fraction of a pixel, which
// causes bands around edges of anatomical structures to appear in the
// difference image. A perfect registration would have produced a null
// difference image.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[height=0.44\textwidth]{ImageRegistration1TraceTranslations}
// \includegraphics[height=0.44\textwidth]{ImageRegistration1TraceMetric}
// \itkcaption[Trace of translations and metrics during registration]{The sequence
// of translations and metric values at each iteration of the optimizer.}
// \label{fig:ImageRegistration1Trace}
// \end{figure}
//
// It is always useful to keep in mind that registration is essentially an
// optimization problem. Figure \ref{fig:ImageRegistration1Trace} helps to
// reinforce this notion by showing the trace of translations and values of
// the image metric at each iteration of the optimizer. It can be seen from
// the top figure that the step length is reduced progressively as the
// optimizer gets closer to the metric extrema. The bottom plot clearly
// shows how the metric value decreases as the optimization advances. The
// log plot helps to highlight the normal oscillations of the optimizer
// around the extrema value.
//
// In this section, we used a very simple example to introduce the basic components
// of a registration process in ITKv4. However, studying this example alone is not
// enough to start using the \doxygen{ImageRegistrationMethodv4}.
// In order to choose the best registration practice for a specific application,
// knowledge of other registration method instantiations and their capabilities are
// required.
// For example, direct initialization of the output optimizable transform is shown in
// section~\ref{sec:RigidRegistrationIn2D}. This method can simplify the registration
// process in many cases. Also, multi-resolution and multistage registration approaches
// are illustrated in sections~\ref{sec:MultiResolutionRegistration} and
// ~\ref{sec:MultiStageRegistration}.
// These examples illustrate the flexibility in the usage of ITKv4 registration method
// framework that can help to provide faster and more reliable registration processes.
//
// Software Guide : EndLatex
return
EXIT_SUCCESS;
}
Generated on Sat Jan 30 2016 02:55:24 for ITK by
1.8.5