ITK
5.0.0
Insight Segmentation and Registration Toolkit
Main Page
Related Pages
Modules
Namespaces
Classes
Files
Examples
Examples/DataRepresentation/Image/Image4.cxx
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// Even though \href{https://www.itk.org}{ITK} can be used to perform
// general image processing tasks, the primary purpose of the toolkit is the
// processing of medical image data. In that respect, additional
// information about the images is considered mandatory. In particular the
// information associated with the physical spacing between pixels and the
// position of the image in space with respect to some world coordinate
// system are extremely important.
//
// Image origin, voxel directions (i.e. orientation), and spacing are fundamental to many
// applications. Registration, for example, is performed in physical
// coordinates. Improperly defined spacing, direction, and origins will result in
// inconsistent results in such processes. Medical images with no spatial
// information should not be used for medical diagnosis, image analysis,
// feature extraction, assisted radiation therapy or image guided surgery. In
// other words, medical images lacking spatial information are not only
// useless but also hazardous.
//
// \begin{figure} \center
// \includegraphics[width=\textwidth]{ImageOriginAndSpacing}
// \itkcaption[ITK Image Geometrical Concepts]{Geometrical concepts associated
// with the ITK image.}
// \label{fig:ImageOriginAndSpacing}
// \end{figure}
//
// Figure \ref{fig:ImageOriginAndSpacing} illustrates the main geometrical
// concepts associated with the \doxygen{Image}.
// In this figure, circles are
// used to represent the center of pixels. The value of the pixel is assumed
// to exist as a Dirac delta function located at the pixel center. Pixel
// spacing is measured between the pixel centers and can be different along
// each dimension. The image origin is associated with the coordinates of the
// first pixel in the image.
// For this simplified example, the voxel lattice is perfectly aligned with physical
// space orientation, and the image direction is therefore an identity mapping. If the
// voxel lattice samples were rotated with respect to physical space, then the image direction
// would contain a rotation matrix.
//
// A \emph{pixel} is considered to be the
// rectangular region surrounding the pixel center holding the data
// value.
//
// Software Guide : EndLatex
#include "
itkImage.h
"
// Function to simulate getting mouse click from an image
static
itk::Image< unsigned short, 3 >::IndexType
GetIndexFromMouseClick()
{
itk::Image< unsigned short, 3 >::IndexType
LeftEyeIndex;
LeftEyeIndex[0]=60;
LeftEyeIndex[1]=127;
LeftEyeIndex[2]=93;
return
LeftEyeIndex;
}
int
main(
int
,
char
*[])
{
constexpr
unsigned
int
Dimension
= 3;
using
ImageType =
itk::Image< unsigned short, Dimension >
;
ImageType::Pointer image = ImageType::New();
const
ImageType::SizeType
size = {{ 200, 200, 200}};
//Size along {X,Y,Z}
const
ImageType::IndexType
start = {{ 0, 0, 0 }};
// First index on {X,Y,Z}
ImageType::RegionType
region;
region.
SetSize
( size );
region.SetIndex( start );
image->SetRegions( region );
image->Allocate(
true
);
// initialize buffer to zero
// Software Guide : BeginLatex
//
// Image spacing is represented in a \code{FixedArray}
// whose size matches the dimension of the image. In order to manually set
// the spacing of the image, an array of the corresponding type must be
// created. The elements of the array should then be initialized with the
// spacing between the centers of adjacent pixels. The following code
// illustrates the methods available in the \doxygen{Image} class for dealing
// with spacing and origin.
//
// \index{itk::Image!Spacing}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ImageType::SpacingType spacing;
// Units (e.g., mm, inches, etc.) are defined by the application.
spacing[0] = 0.33;
// spacing along X
spacing[1] = 0.33;
// spacing along Y
spacing[2] = 1.20;
// spacing along Z
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The array can be assigned to the image using
// the \code{SetSpacing()} method.
//
// \index{itk::Image!SetSpacing()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
image->SetSpacing( spacing );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The spacing information can be retrieved from an image by using the
// \code{GetSpacing()} method. This method returns a reference to a
// \code{FixedArray}. The returned object can then be used to read the
// contents of the array. Note the use of the \code{const} keyword to indicate
// that the array will not be modified.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const
ImageType::SpacingType& sp = image->GetSpacing();
std::cout <<
"Spacing = "
;
std::cout << sp[0] <<
", "
<< sp[1] <<
", "
<< sp[2] << std::endl;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The image origin is managed in a similar way to the spacing. A
// \code{Point} of the appropriate dimension must first be
// allocated. The coordinates of the origin can then be assigned to
// every component. These coordinates correspond to the position of
// the first pixel of the image with respect to an arbitrary
// reference system in physical space. It is the user's
// responsibility to make sure that multiple images used in the same
// application are using a consistent reference system. This is
// extremely important in image registration applications.
//
// The following code illustrates the creation and assignment of a variable
// suitable for initializing the image origin.
//
// \index{itk::Image!origin}
// \index{itk::Image!SetOrigin()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// coordinates of the center of the first pixel in N-D
ImageType::PointType
newOrigin;
newOrigin.
Fill
(0.0);
image->SetOrigin( newOrigin );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The origin can also be retrieved from an image by using the
// \code{GetOrigin()} method. This will return a reference to a
// \code{Point}. The reference can be used to read the contents of
// the array. Note again the use of the \code{const} keyword to indicate
// that the array contents will not be modified.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const
ImageType::PointType
& origin = image->GetOrigin();
std::cout <<
"Origin = "
;
std::cout << origin[0] <<
", "
<< origin[1] <<
", "
<< origin[2] << std::endl;
// Software Guide : EndCodeSnippet
//TODO: This example should really be written for a more complicated direction cosine. i.e.
//As the first index element increases, the 1st physical space decreases.
// Software Guide : BeginLatex
//
// The image direction matrix represents the orientation relationships between
// the image samples and physical space coordinate systems. The image direction
// matrix is an orthonormal matrix that describes the possible permutation of image index
// values and the rotational aspects that are needed to properly reconcile image index
// organization with physical space axis.
// The image directions is a $N x N$ matrix where $N$ is the dimension of the image. An
// identity image direction indicates that increasing values of the 1st, 2nd, 3rd index
// element corresponds to increasing values of the 1st, 2nd and 3rd physical space axis
// respectively, and that the voxel samples are perfectly aligned with the physical space axis.
//
// The following code illustrates the creation and assignment of a variable
// suitable for initializing the image direction with an identity.
//
// \index{itk::Image!direction}
// \index{itk::Image!SetDirection()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// coordinates of the center of the first pixel in N-D
ImageType::DirectionType
direction;
direction.
SetIdentity
();
image->SetDirection( direction );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The direction can also be retrieved from an image by using the
// \code{GetDirection()} method. This will return a reference to a
// \code{Matrix}. The reference can be used to read the contents of
// the array. Note again the use of the \code{const} keyword to indicate
// that the matrix contents can not be modified.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const
ImageType::DirectionType
& direct = image->GetDirection();
std::cout <<
"Direction = "
<< std::endl;
std::cout << direct << std::endl;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Once the spacing, origin, and direction of the image samples have been initialized, the image
// will correctly map pixel indices to and from physical space
// coordinates. The following code illustrates how a point in physical
// space can be mapped into an image index for the purpose of reading the
// content of the closest pixel.
//
// First, a \doxygen{Point} type must be declared. The point type is
// templated over the type used to represent coordinates and over the
// dimension of the space. In this particular case, the dimension of the
// point must match the dimension of the image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using
PointType
=
itk::Point< double, ImageType::ImageDimension >
;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The \doxygen{Point} class, like an \doxygen{Index}, is a relatively
// small and simple object. This means that no \doxygen{SmartPointer}
// is used here and the objects are simply declared as instances,
// like any other C++ class. Once the point is declared, its
// components can be accessed using traditional array notation. In
// particular, the \code{[]} operator is available. For efficiency reasons,
// no bounds checking is performed on the index used to access a particular
// point component. It is the user's responsibility to make sure that the
// index is in the range $\{0,Dimension-1\}$.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
PointType
point;
point[0] = 1.45;
// x coordinate
point[1] = 7.21;
// y coordinate
point[2] = 9.28;
// z coordinate
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The image will map the point to an index using the values of the
// current spacing and origin. An index object must be provided to
// receive the results of the mapping. The index object can be
// instantiated by using the \code{IndexType} defined in the image
// type.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ImageType::IndexType
pixelIndex;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The \code{TransformPhysicalPointToIndex()} method of the image class
// will compute the pixel index closest to the point provided. The method
// checks for this index to be contained inside the current buffered pixel
// data. The method returns a boolean indicating whether the resulting
// index falls inside the buffered region or not. The output index should
// not be used when the returned value of the method is \code{false}.
//
// The following lines illustrate the point to index mapping and the
// subsequent use of the pixel index for accessing pixel data from the
// image.
//
// \index{itk::Image!TransformPhysicalPointToIndex()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const
bool
isInside =
image->TransformPhysicalPointToIndex( point, pixelIndex );
if
( isInside )
{
ImageType::PixelType pixelValue = image->GetPixel( pixelIndex );
pixelValue += 5;
image->SetPixel( pixelIndex, pixelValue );
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Remember that \code{GetPixel()} and \code{SetPixel()} are very
// inefficient methods for accessing pixel data. Image iterators should be
// used when massive access to pixel data is required.
//
// Software Guide : EndLatex
//
// Software Guide : BeginLatex
//
// The following example illustrates the mathematical relationships between
// image index locations and its corresponding physical point representation
// for a given Image.
//
// \index{itk::Image!PhysicalPoint}
// \index{itk::Image!Index}
//
// Let us imagine that a graphical user interface exists
// where the end user manually selects the voxel index location
// of the left eye in a volume with a mouse interface. We need to
// convert that index location to a physical location so that
// laser guided surgery can be accurately performed. The
// \code{TransformIndexToPhysicalPoint} method can be used for this.
//
// SoftwareGuide : EndLatex
// Software Guide : BeginCodeSnippet
const
ImageType::IndexType
LeftEyeIndex = GetIndexFromMouseClick();
ImageType::PointType
LeftEyePoint;
image->TransformIndexToPhysicalPoint(LeftEyeIndex,LeftEyePoint);
// Software Guide : EndCodeSnippet
std::cout <<
"==========================================="
<< std::endl;
std::cout <<
"The Left Eye Location is "
<< LeftEyePoint << std::endl;
// create new global def \NL in latex to avoid \\ multi-line warning
// Software Guide : BeginLatex
//
// \gdef\NL{\\}
//
// For a given index $\vec{I}$ in 3D, the physical location $\vec{P}$ is calculated
// as following:
//
// \begin{equation}
// \begin{pmatrix}
// P_1\NL
// P_2\NL
// P_3
// \end{pmatrix}
// =
// \begin{pmatrix}
// O_1\NL
// O_2\NL
// O_3
// \end{pmatrix}
// +
// \begin{pmatrix}
// D_{1,1} & D_{1,2} & D_{1,3}\NL
// D_{2,1} & D_{2,2} & D_{2,3}\NL
// D_{3,1} & D_{3,2} & D_{3,3}
// \end{pmatrix}
// *
// \begin{pmatrix}
// S_1 & 0 & 0 \NL
// 0 & S_2 & 0 \NL
// 0 & 0 & S_3\NL
// \end{pmatrix}
// *
// \begin{pmatrix}
// I_1\NL
// I_2\NL
// I_3
// \end{pmatrix}
// \end{equation}
// Where:\newline
// $\vec{I}$: image space index.\newline
// $\vec{P}$: resulting physical space position of the image index $\vec{I}$.\newline
// $\vec{O}$: physical space origin of the first image index.\newline
// $\mathcal{D}$: direction cosines matrix (orthonormal). It represents the orientation
// relationship between the image and the physical space coordinate system.\newline
// $\vec{S}$: physical spacing between pixels of the same axis.
// \newline
//
// \noindent The operation can be thought as a particular case of the linear transform:
// \begin{equation}
// \vec{P} = \vec{O} + \mathcal{A} \cdot \vec{I}
// \end{equation}
// \noindent where $\mathcal{A}$:
// \begin{equation}
// \mathcal{A}
// =
// \begin{pmatrix}
// D_{1,1}\cdot S_1 & D_{1,2}\cdot S_2 & D_{1,3}\cdot S_3\NL
// D_{2,1}\cdot S_1 & D_{2,2}\cdot S_2 & D_{2,3}\cdot S_3\NL
// D_{3,1}\cdot S_1 & D_{3,2}\cdot S_2 & D_{3,3}\cdot S_3
// \end{pmatrix}
// \end{equation}
//
// In matlab syntax the conversions are:
//
// \begin{verbatim}
// % Non-identity Spacing and Direction
// spacing=diag( [0.9375, 0.9375, 1.5] );
// direction=[0.998189, 0.0569345, -0.0194113;
// 0.0194429, -7.38061e-08, 0.999811;
// 0.0569237, -0.998378, -0.00110704];
// point = origin + direction * spacing * LeftEyeIndex
// \end{verbatim}
//
// A corresponding mathematical expansion of the C/C++ code is:
// SoftwareGuide : EndLatex
// Software Guide : BeginCodeSnippet
using
MatrixType =
itk::Matrix<double, Dimension, Dimension>
;
MatrixType SpacingMatrix;
SpacingMatrix.
Fill
( 0.0F );
const
ImageType::SpacingType & ImageSpacing = image->GetSpacing();
SpacingMatrix( 0,0 ) = ImageSpacing[0];
SpacingMatrix( 1,1 ) = ImageSpacing[1];
SpacingMatrix( 2,2 ) = ImageSpacing[2];
const
ImageType::DirectionType
& ImageDirectionCosines =
image->GetDirection();
const
ImageType::PointType
&ImageOrigin = image->GetOrigin();
using
VectorType
=
itk::Vector< double, Dimension >
;
VectorType
LeftEyeIndexVector;
LeftEyeIndexVector[0]= LeftEyeIndex[0];
LeftEyeIndexVector[1]= LeftEyeIndex[1];
LeftEyeIndexVector[2]= LeftEyeIndex[2];
ImageType::PointType
LeftEyePointByHand =
ImageOrigin + ImageDirectionCosines * SpacingMatrix * LeftEyeIndexVector;
// Software Guide : EndCodeSnippet
std::cout <<
"==========================================="
<< std::endl;
std::cout <<
"Spacing:: "
<< std::endl << SpacingMatrix << std::endl;
std::cout <<
"==========================================="
<< std::endl;
std::cout <<
"DirectionCosines:: "
<< std::endl << ImageDirectionCosines << std::endl;
std::cout <<
"==========================================="
<< std::endl;
std::cout <<
"Origin:: "
<< std::endl << ImageOrigin << std::endl;
std::cout <<
"==========================================="
<< std::endl;
std::cout <<
"The Left Eye Location is "
<< LeftEyePointByHand << std::endl;
//
// Check if two results are identical
//
if
( (LeftEyePointByHand - LeftEyePoint).
GetNorm
() < 0.01F )
{
std::cout <<
"==========================================="
<< std::endl;
std::cout <<
"Two results are identical as expected!"
<< std::endl;
std::cout <<
"The Left Eye from TransformIndexToPhysicalPoint is "
<< LeftEyePoint << std::endl;
std::cout <<
"The Left Eye from Math is "
<< LeftEyePointByHand << std::endl;
}
return
EXIT_SUCCESS;
}
Generated on Sun Mar 24 2019 02:34:28 for ITK by
1.8.5