ITK  5.0.0
Insight Segmentation and Registration Toolkit
Examples/Filtering/MorphologicalImageEnhancement.cxx
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates the use of Mathematical Morphology filters for
// image enhancement. One of the difficulties of image enhancement is that it
// is defined based on human visual perception and it is related to a
// particular set of features that are of interest in the image. In this
// context, what is considered enhancement for one person, may be seen as
// image degradation by another person.
//
// \index{itk::AntiAliasBinaryImageFilter|textbf}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkImage.h"
#include "itkPNGImageIO.h"
int main( int argc, char * argv[] )
{
if( argc < 4 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " inputImageFile ";
std::cerr << " outputImageFile radius " << std::endl;
return EXIT_FAILURE;
}
//
// The following code defines the input and output pixel types and their
// associated image types.
//
constexpr unsigned int Dimension = 2;
using PixelType = unsigned char;
using WritePixelType = unsigned char;
// readers/writers
// structuring element
using StructuringElementType = itk::BinaryBallStructuringElement<
PixelType, Dimension >;
// define the opening and closing types
ImageType, ImageType, StructuringElementType >;
ImageType, ImageType, StructuringElementType >;
// define arithmetic operation filters
using AdditionFilterType = itk::ConstrainedValueAdditionImageFilter<
ImageType, ImageType, ImageType >;
using SubtractionFilterType = itk::ConstrainedValueDifferenceImageFilter<
ImageType, ImageType, ImageType >;
// define rescaling filter
using RescaleFilterType = itk::RescaleIntensityImageFilter<
ImageType, WriteImageType>;
// Create structuring element
StructuringElementType structuringElement;
// (argv[3]+1) x (argv[3]+1) structuring element
structuringElement.SetRadius( std::stoi(argv[3]) );
structuringElement.CreateStructuringElement();
// Setup the input and output files
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[2] );
// reading input image
try
{
reader->Update();
}
catch ( itk::ExceptionObject &err)
{
std::cout << "Problems reading input image" << std::endl;
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
// Create the opening closing filters
OpeningFilterType::Pointer opening = OpeningFilterType::New();
ClosingFilterType::Pointer closing = ClosingFilterType::New();
// Setup the opening and closing methods
opening->SetKernel( structuringElement );
closing->SetKernel( structuringElement );
// Setup minnimum and maximum of rescale filter
RescaleFilterType::Pointer rescaleFilter = RescaleFilterType::New();
rescaleFilter->SetOutputMinimum( 0 );
rescaleFilter->SetOutputMaximum( 255 );
// creation of the pipeline. The enhancement operation is given by:
// Original Image + Top Hat Image - Bottom Hat Image
opening->SetInput( reader->GetOutput() );
closing->SetInput( reader->GetOutput() );
SubtractionFilterType::Pointer topHat = SubtractionFilterType::New();
topHat->SetInput1( reader->GetOutput() );
topHat->SetInput2( opening->GetOutput() );
SubtractionFilterType::Pointer bottomHat = SubtractionFilterType::New();
bottomHat->SetInput1( closing->GetOutput() );
bottomHat->SetInput2( reader->GetOutput() );
AdditionFilterType::Pointer internalAddition = AdditionFilterType::New();
internalAddition->SetInput1( reader->GetOutput() );
internalAddition->SetInput2( topHat->GetOutput() );
SubtractionFilterType::Pointer imageEnhancement =
SubtractionFilterType::New();
imageEnhancement->SetInput1( internalAddition->GetOutput() );
imageEnhancement->SetInput2( bottomHat->GetOutput() );
rescaleFilter->SetInput( imageEnhancement->GetOutput() );
writer->SetInput( rescaleFilter->GetOutput() );
try
{
writer->Update();
}
catch( itk::ExceptionObject & err )
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err <<std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}