ITK  5.0.0
Insight Segmentation and Registration Toolkit
Examples/RegistrationITKv3/ImageRegistration18.cxx
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates how to use the
// \doxygen{GradientDifferenceImageToImageMetric}.
//
// This metric is particularly useful for registration scenarios where fitting
// the edges of both images is the most relevant criteria for registration
// success.
//
// \index{itk::ImageRegistrationMethod!Monitoring}
//
//
// Software Guide : EndLatex
#include "itkCommand.h"
class CommandIterationUpdate : public itk::Command
{
public:
using Self = CommandIterationUpdate;
using Superclass = itk::Command;
using Pointer = itk::SmartPointer<Self>;
itkNewMacro( Self );
protected:
CommandIterationUpdate() {};
public:
using OptimizerPointer = const OptimizerType *;
void Execute(itk::Object *caller, const itk::EventObject & event) override
{
Execute( (const itk::Object *)caller, event);
}
void Execute(const itk::Object * object, const itk::EventObject & event) override
{
OptimizerPointer optimizer = static_cast< OptimizerPointer >( object );
if( ! itk::IterationEvent().CheckEvent( &event ) )
{
return;
}
std::cout << optimizer->GetCurrentIteration() << " = ";
std::cout << optimizer->GetValue() << " : ";
std::cout << optimizer->GetCurrentPosition() << std::endl;
}
};
int main( int argc, char *argv[] )
{
if( argc < 3 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile ";
std::cerr << "outputImagefile" << std::endl;
std::cerr << "[initialTx] [initialTy]" << std::endl;
return EXIT_FAILURE;
}
constexpr unsigned int Dimension = 2;
using PixelType = unsigned short;
using FixedImageType = itk::Image< PixelType, Dimension >;
using MovingImageType = itk::Image< PixelType, Dimension >;
using InterpolatorType = itk::LinearInterpolateImageFunction<
MovingImageType,
double >;
using RegistrationType = itk::ImageRegistrationMethod<
FixedImageType,
MovingImageType >;
FixedImageType,
MovingImageType >;
TransformType::Pointer transform = TransformType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();
RegistrationType::Pointer registration = RegistrationType::New();
registration->SetOptimizer( optimizer );
registration->SetTransform( transform );
registration->SetInterpolator( interpolator );
MetricType::Pointer metric = MetricType::New();
metric->SetDerivativeDelta( 0.5 );
registration->SetMetric( metric );
using FixedImageReaderType = itk::ImageFileReader< FixedImageType >;
using MovingImageReaderType = itk::ImageFileReader< MovingImageType >;
FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New();
MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName( argv[1] );
movingImageReader->SetFileName( argv[2] );
registration->SetFixedImage( fixedImageReader->GetOutput() );
registration->SetMovingImage( movingImageReader->GetOutput() );
fixedImageReader->Update(); // This is needed to make the BufferedRegion below valid.
registration->SetFixedImageRegion(
fixedImageReader->GetOutput()->GetBufferedRegion() );
using ParametersType = RegistrationType::ParametersType;
ParametersType initialParameters( transform->GetNumberOfParameters() );
initialParameters[0] = 0.0; // Initial offset in mm along X
initialParameters[1] = 0.0; // Initial offset in mm along Y
if( argc > 4 )
{
initialParameters[0] = std::stod( argv[4] );
}
if( argc > 5 )
{
initialParameters[1] = std::stod( argv[5] );
}
std::cout << "Initial parameters = " << initialParameters << std::endl;
registration->SetInitialTransformParameters( initialParameters );
optimizer->SetMaximumStepLength( 4.00 );
optimizer->SetMinimumStepLength( 0.01 );
optimizer->SetNumberOfIterations( 200 );
optimizer->SetGradientMagnitudeTolerance( 1e-40 );
optimizer->MaximizeOn();
CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();
optimizer->AddObserver( itk::IterationEvent(), observer );
try
{
registration->Update();
std::cout << "Optimizer stop condition: "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch( itk::ExceptionObject & err )
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return EXIT_FAILURE;
}
ParametersType finalParameters = registration->GetLastTransformParameters();
const double TranslationAlongX = finalParameters[0];
const double TranslationAlongY = finalParameters[1];
const unsigned int numberOfIterations = optimizer->GetCurrentIteration();
const double bestValue = optimizer->GetValue();
std::cout << "Registration done !" << std::endl;
std::cout << "Optimizer stop condition = "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
std::cout << "Number of iterations = " << numberOfIterations << std::endl;
std::cout << "Translation along X = " << TranslationAlongX << std::endl;
std::cout << "Translation along Y = " << TranslationAlongY << std::endl;
std::cout << "Optimal metric value = " << bestValue << std::endl;
// Prepare the resampling filter in order to map the moving image.
//
using ResampleFilterType = itk::ResampleImageFilter<
MovingImageType,
FixedImageType >;
TransformType::Pointer finalTransform = TransformType::New();
finalTransform->SetParameters( finalParameters );
finalTransform->SetFixedParameters( transform->GetFixedParameters() );
ResampleFilterType::Pointer resample = ResampleFilterType::New();
resample->SetTransform( finalTransform );
resample->SetInput( movingImageReader->GetOutput() );
FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
resample->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resample->SetOutputOrigin( fixedImage->GetOrigin() );
resample->SetOutputSpacing( fixedImage->GetSpacing() );
resample->SetOutputDirection( fixedImage->GetDirection() );
resample->SetDefaultPixelValue( 100 );
// Prepare a writer and caster filters to send the resampled moving image to
// a file
//
using OutputPixelType = unsigned char;
using CastFilterType = itk::CastImageFilter<
FixedImageType,
OutputImageType >;
WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer caster = CastFilterType::New();
writer->SetFileName( argv[3] );
caster->SetInput( resample->GetOutput() );
writer->SetInput( caster->GetOutput() );
writer->Update();
return EXIT_SUCCESS;
}