ITK
5.0.0
Insight Segmentation and Registration Toolkit
Main Page
Related Pages
Modules
Namespaces
Classes
Files
Examples
Examples/RegistrationITKv4/ImageRegistration15.cxx
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates how to do registration with a 2D Translation Transform,
// the Normalized Mutual Information metric and the One+One evolutionary optimizer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "
itkImageRegistrationMethod.h
"
#include "
itkTranslationTransform.h
"
#include "
itkNormalizedMutualInformationHistogramImageToImageMetric.h
"
#include "
itkOnePlusOneEvolutionaryOptimizer.h
"
#include "
itkNormalVariateGenerator.h
"
#include "
itkImageFileReader.h
"
#include "
itkImageFileWriter.h
"
#include "
itkResampleImageFilter.h
"
#include "
itkCastImageFilter.h
"
// The following section of code implements a Command observer
// used to monitor the evolution of the registration process.
//
#include "
itkCommand.h
"
class
CommandIterationUpdate :
public
itk::Command
{
public
:
using
Self = CommandIterationUpdate;
using
Superclass =
itk::Command
;
using
Pointer =
itk::SmartPointer<Self>
;
itkNewMacro( Self );
protected
:
CommandIterationUpdate() {m_LastMetricValue = 0;}
public
:
using
OptimizerType =
itk::OnePlusOneEvolutionaryOptimizer
;
using
OptimizerPointer =
const
OptimizerType *;
void
Execute
(
itk::Object
*caller,
const
itk::EventObject
& event)
override
{
Execute
( (
const
itk::Object
*)caller, event);
}
void
Execute
(
const
itk::Object
*
object
,
const
itk::EventObject
& event)
override
{
auto
optimizer =
static_cast<
OptimizerPointer
>
( object );
if
( ! itk::IterationEvent().CheckEvent( &event ) )
{
return
;
}
double
currentValue = optimizer->GetValue();
// Only print out when the Metric value changes
if
( std::fabs( m_LastMetricValue - currentValue ) > 1
e
-7 )
{
std::cout << optimizer->GetCurrentIteration() <<
" "
;
std::cout << currentValue <<
" "
;
std::cout << optimizer->GetFrobeniusNorm() <<
" "
;
std::cout << optimizer->GetCurrentPosition() << std::endl;
m_LastMetricValue = currentValue;
}
}
private
:
double
m_LastMetricValue;
};
int
main(
int
argc,
char
*argv[] )
{
if
( argc < 4 )
{
std::cerr <<
"Missing Parameters "
<< std::endl;
std::cerr <<
"Usage: "
<< argv[0];
std::cerr <<
" fixedImageFile movingImageFile "
;
std::cerr <<
"outputImagefile [numberOfHistogramBins] "
;
std::cerr <<
"[initialRadius] [epsilon] [initialTx] [initialTy]"
<< std::endl;
return
EXIT_FAILURE;
}
constexpr
unsigned
int
Dimension
= 2;
using
PixelType =
unsigned
char;
using
FixedImageType =
itk::Image< PixelType, Dimension >
;
using
MovingImageType =
itk::Image< PixelType, Dimension >
;
using
TransformType =
itk::TranslationTransform< double, Dimension >
;
using
OptimizerType =
itk::OnePlusOneEvolutionaryOptimizer
;
using
InterpolatorType =
itk::LinearInterpolateImageFunction
<
MovingImageType,
double
>;
using
RegistrationType =
itk::ImageRegistrationMethod
<
FixedImageType,
MovingImageType >;
using
MetricType =
itk::NormalizedMutualInformationHistogramImageToImageMetric
<
FixedImageType,
MovingImageType >;
TransformType::Pointer transform = TransformType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();
RegistrationType::Pointer registration = RegistrationType::New();
registration->SetOptimizer( optimizer );
registration->SetTransform( transform );
registration->SetInterpolator( interpolator );
MetricType::Pointer metric = MetricType::New();
registration->SetMetric( metric );
unsigned
int
numberOfHistogramBins = 32;
if
( argc > 4 )
{
numberOfHistogramBins = std::stoi( argv[4] );
std::cout <<
"Using "
<< numberOfHistogramBins <<
" Histogram bins"
<< std::endl;
}
MetricType::HistogramType::SizeType
histogramSize;
histogramSize.
SetSize
(2);
histogramSize[0] = numberOfHistogramBins;
histogramSize[1] = numberOfHistogramBins;
metric->SetHistogramSize( histogramSize );
const
unsigned
int
numberOfParameters = transform->GetNumberOfParameters();
using
ScalesType = MetricType::ScalesType;
ScalesType scales( numberOfParameters );
scales.Fill( 1.0 );
metric->SetDerivativeStepLengthScales(scales);
using
FixedImageReaderType =
itk::ImageFileReader< FixedImageType >
;
using
MovingImageReaderType =
itk::ImageFileReader< MovingImageType >
;
FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New();
MovingImageReaderType::Pointer movingImageReader
= MovingImageReaderType::New();
fixedImageReader->SetFileName( argv[1] );
movingImageReader->SetFileName( argv[2] );
registration->SetFixedImage( fixedImageReader->GetOutput() );
registration->SetMovingImage( movingImageReader->GetOutput() );
fixedImageReader->Update();
movingImageReader->Update();
FixedImageType::ConstPointer fixedImage = fixedImageReader->GetOutput();
registration->SetFixedImageRegion( fixedImage->GetBufferedRegion() );
transform->SetIdentity();
using
ParametersType = RegistrationType::ParametersType;
ParametersType initialParameters = transform->GetParameters();
initialParameters[0] = 0.0;
initialParameters[1] = 0.0;
if
( argc > 8 )
{
initialParameters[0] = std::stod( argv[7] );
initialParameters[1] = std::stod( argv[8] );
}
registration->SetInitialTransformParameters( initialParameters );
std::cout <<
"Initial transform parameters = "
;
std::cout << initialParameters << std::endl;
using
OptimizerScalesType = OptimizerType::ScalesType;
OptimizerScalesType optimizerScales( transform->GetNumberOfParameters() );
FixedImageType::RegionType
region = fixedImage->GetLargestPossibleRegion();
FixedImageType::SizeType
size = region.
GetSize
();
FixedImageType::SpacingType spacing = fixedImage->GetSpacing();
optimizerScales[0] = 1.0 / ( 0.1 * size[0] * spacing[0] );
optimizerScales[1] = 1.0 / ( 0.1 * size[1] * spacing[1] );
optimizer->SetScales( optimizerScales );
using
GeneratorType =
itk::Statistics::NormalVariateGenerator
;
GeneratorType::Pointer generator = GeneratorType::New();
generator->Initialize(12345);
optimizer->MaximizeOn();
optimizer->SetNormalVariateGenerator( generator );
double
initialRadius = 0.01;
if
( argc > 5 )
{
initialRadius = std::stod( argv[5] );
std::cout <<
"Using initial radius = "
<< initialRadius << std::endl;
}
optimizer->Initialize( initialRadius );
double
epsilon = 0.001;
if
( argc > 6 )
{
epsilon = std::stod( argv[6] );
std::cout <<
"Using epsilon = "
<< epsilon << std::endl;
}
optimizer->SetEpsilon( epsilon );
optimizer->SetMaximumIteration( 2000 );
// Create the Command observer and register it with the optimizer.
//
CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();
optimizer->AddObserver( itk::IterationEvent(), observer );
try
{
registration->Update();
std::cout <<
"Optimizer stop condition: "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch
(
itk::ExceptionObject
& err )
{
std::cout <<
"ExceptionObject caught !"
<< std::endl;
std::cout << err << std::endl;
return
EXIT_FAILURE;
}
ParametersType finalParameters = registration->GetLastTransformParameters();
const
double
finalTranslationX = finalParameters[0];
const
double
finalTranslationY = finalParameters[1];
unsigned
int
numberOfIterations = optimizer->GetCurrentIteration();
const
double
bestValue = optimizer->GetValue();
// Print out results
std::cout <<
"Result = "
<< std::endl;
std::cout <<
" Translation X = "
<< finalTranslationX << std::endl;
std::cout <<
" Translation Y = "
<< finalTranslationY << std::endl;
std::cout <<
" Iterations = "
<< numberOfIterations << std::endl;
std::cout <<
" Metric value = "
<< bestValue << std::endl;
using
ResampleFilterType =
itk::ResampleImageFilter
<
MovingImageType, FixedImageType >;
TransformType::Pointer finalTransform = TransformType::New();
finalTransform->SetParameters( finalParameters );
finalTransform->SetFixedParameters( transform->GetFixedParameters() );
ResampleFilterType::Pointer resample = ResampleFilterType::New();
resample->SetTransform( finalTransform );
resample->SetInput( movingImageReader->GetOutput() );
resample->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resample->SetOutputOrigin( fixedImage->GetOrigin() );
resample->SetOutputSpacing( fixedImage->GetSpacing() );
resample->SetOutputDirection( fixedImage->GetDirection() );
resample->SetDefaultPixelValue( 100 );
using
OutputImageType =
itk::Image< PixelType, Dimension >
;
using
WriterType =
itk::ImageFileWriter< OutputImageType >
;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[3] );
writer->SetInput( resample->GetOutput() );
writer->Update();
// Software Guide : EndCodeSnippet
return
EXIT_SUCCESS;
}
Generated on Sun Mar 24 2019 02:34:44 for ITK by
1.8.5