ITK
5.0.0
Insight Segmentation and Registration Toolkit
Main Page
Related Pages
Modules
Namespaces
Classes
Files
Examples
Examples/RegistrationITKv4/ImageRegistration19.cxx
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "
itkImageRegistrationMethod.h
"
#include "
itkAffineTransform.h
"
#include "
itkMatchCardinalityImageToImageMetric.h
"
#include "
itkNearestNeighborInterpolateImageFunction.h
"
#include "
itkAmoebaOptimizer.h
"
#include "
itkCenteredTransformInitializer.h
"
#include "
itkImageFileReader.h
"
#include "
itkImageFileWriter.h
"
#include "
itkResampleImageFilter.h
"
#include "
itkCastImageFilter.h
"
#include "
itkSquaredDifferenceImageFilter.h
"
#include "
itkFileOutputWindow.h
"
//
// The following piece of code implements an observer
// that will monitor the evolution of the registration process.
//
#include "
itkCommand.h
"
class
CommandIterationUpdate19 :
public
itk::Command
{
public
:
using
Self = CommandIterationUpdate19;
using
Superclass =
itk::Command
;
using
Pointer =
itk::SmartPointer<Self>
;
itkNewMacro( Self );
protected
:
CommandIterationUpdate19() =
default
;
public
:
using
OptimizerType =
itk::AmoebaOptimizer
;
using
OptimizerPointer =
const
OptimizerType *;
void
Execute
(
itk::Object
*caller,
const
itk::EventObject
& event)
override
{
Execute
( (
const
itk::Object
*)caller, event);
}
void
Execute
(
const
itk::Object
*
object
,
const
itk::EventObject
& event)
override
{
auto
optimizer =
static_cast<
OptimizerPointer
>
( object );
if
( optimizer ==
nullptr
)
{
return
;
}
if
( ! itk::IterationEvent().CheckEvent( &event ) )
{
return
;
}
std::cout << optimizer->GetCachedValue() <<
" "
;
std::cout << optimizer->GetCachedCurrentPosition() << std::endl;
}
};
int
main(
int
argc,
char
*argv[] )
{
if
( argc < 3 )
{
std::cerr <<
"Missing Parameters "
<< std::endl;
std::cerr <<
"Usage: "
<< argv[0];
std::cerr <<
" fixedImageFile movingImageFile "
;
std::cerr <<
" outputImagefile [differenceImage]"
<< std::endl;
std::cerr <<
" [initialTx] [initialTy]"
<< std::endl;
return
EXIT_FAILURE;
}
itk::FileOutputWindow::Pointer
fow =
itk::FileOutputWindow::New
();
fow->SetInstance( fow );
// The types of each one of the components in the registration methods should
// be instantiated. First, we select the image dimension and the type for
// representing image pixels.
//
constexpr
unsigned
int
Dimension
= 2;
using
PixelType = float;
// The types of the input images are instantiated by the following lines.
//
using
FixedImageType =
itk::Image< PixelType, Dimension >
;
using
MovingImageType =
itk::Image< PixelType, Dimension >
;
using
TransformType =
itk::AffineTransform< double, Dimension >
;
using
OptimizerType =
itk::AmoebaOptimizer
;
using
MetricType =
itk::MatchCardinalityImageToImageMetric
<
FixedImageType,
MovingImageType >;
// Finally, the type of the interpolator is declared. The
// interpolator will evaluate the moving image at non-grid
// positions.
using
InterpolatorType =
itk:: NearestNeighborInterpolateImageFunction
<
MovingImageType,
double
>;
// The registration method type is instantiated using the types of the
// fixed and moving images. This class is responsible for interconnecting
// all the components we have described so far.
using
RegistrationType =
itk::ImageRegistrationMethod
<
FixedImageType,
MovingImageType >;
// Each one of the registration components is created using its
// \code{New()} method and is assigned to its respective
// \doxygen{SmartPointer}.
//
MetricType::Pointer metric = MetricType::New();
TransformType::Pointer transform = TransformType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();
RegistrationType::Pointer registration = RegistrationType::New();
metric->MeasureMatchesOff();
// Each component is now connected to the instance of the registration method.
// \index{itk::RegistrationMethod!SetMetric()}
// \index{itk::RegistrationMethod!SetOptimizer()}
// \index{itk::RegistrationMethod!SetTransform()}
// \index{itk::RegistrationMethod!SetFixedImage()}
// \index{itk::RegistrationMethod!SetMovingImage()}
// \index{itk::RegistrationMethod!SetInterpolator()}
//
registration->SetMetric( metric );
registration->SetOptimizer( optimizer );
registration->SetTransform( transform );
registration->SetInterpolator( interpolator );
using
FixedImageReaderType =
itk::ImageFileReader< FixedImageType >
;
using
MovingImageReaderType =
itk::ImageFileReader< MovingImageType >
;
FixedImageReaderType::Pointer
fixedImageReader = FixedImageReaderType::New();
MovingImageReaderType::Pointer
movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName( argv[1] );
movingImageReader->SetFileName( argv[2] );
// In this example, the fixed and moving images are read from files. This
// requires the \doxygen{ImageRegistrationMethod} to acquire its inputs to
// the output of the readers.
//
registration->SetFixedImage( fixedImageReader->GetOutput() );
registration->SetMovingImage( movingImageReader->GetOutput() );
// The registration can be restricted to consider only a particular region
// of the fixed image as input to the metric computation. This region is
// defined by the \code{SetFixedImageRegion()} method. You could use this
// feature to reduce the computational time of the registration or to avoid
// unwanted objects present in the image affecting the registration outcome.
// In this example we use the full available content of the image. This
// region is identified by the \code{BufferedRegion} of the fixed image.
// Note that for this region to be valid the reader must first invoke its
// \code{Update()} method.
//
// \index{itk::ImageRegistrationMethod!SetFixedImageRegion()}
// \index{itk::Image!GetBufferedRegion()}
//
fixedImageReader->Update();
movingImageReader->Update();
registration->SetFixedImageRegion(
fixedImageReader->GetOutput()->GetBufferedRegion() );
//
// Here we initialize the transform to make sure that the center of
// rotation is set to the center of mass of the object in the fixed image.
//
using
TransformInitializerType =
itk::CenteredTransformInitializer
< TransformType,
FixedImageType, MovingImageType >;
TransformInitializerType::Pointer initializer =
TransformInitializerType::New();
initializer->SetTransform( transform );
initializer->SetFixedImage( fixedImageReader->GetOutput() );
initializer->SetMovingImage( movingImageReader->GetOutput() );
initializer->MomentsOn();
initializer->InitializeTransform();
// The parameters of the transform are initialized by passing them in an
// array. This can be used to setup an initial known correction of the
// misalignment. In this particular case, a translation transform is
// being used for the registration. The array of parameters for this
// transform is simply composed of the rotation matrix and the translation
// values along each dimension.
//
// \index{itk::AffineTransform!GetNumberOfParameters()}
// \index{itk::RegistrationMethod!SetInitialTransformParameters()}
//
using
ParametersType = RegistrationType::ParametersType;
ParametersType initialParameters = transform->GetParameters();
double
tx = 0.0;
double
ty = 0.0;
if
( argc > 6 )
{
tx = std::stod( argv[5] );
ty = std::stod( argv[6] );
}
initialParameters[4] = tx;
// Initial offset in mm along X
initialParameters[5] = ty;
// Initial offset in mm along Y
registration->SetInitialTransformParameters( initialParameters );
// At this point the registration method is ready for execution. The
// optimizer is the component that drives the execution of the
// registration. However, the ImageRegistrationMethod class
// orchestrates the ensemble to make sure that everything is in place
// before control is passed to the optimizer.
//
const
unsigned
int
numberOfParameters = transform->GetNumberOfParameters();
OptimizerType::ParametersType simplexDelta( numberOfParameters );
// This parameter is tightly coupled to the translationScale below
constexpr
double
stepInParametricSpace = 0.01;
simplexDelta.Fill( stepInParametricSpace );
optimizer->AutomaticInitialSimplexOff();
optimizer->SetInitialSimplexDelta( simplexDelta );
optimizer->SetParametersConvergenceTolerance( 1
e
-4 );
// about 0.005 degrees
optimizer->SetFunctionConvergenceTolerance( 1
e
-6 );
// variation in metric value
optimizer->SetMaximumNumberOfIterations( 200 );
// This parameter is tightly coupled to the stepInParametricSpace above.
double
translationScale = 1.0 / 1000.0;
using
OptimizerScalesType = OptimizerType::ScalesType;
OptimizerScalesType optimizerScales( numberOfParameters );
optimizerScales[0] = 1.0;
optimizerScales[1] = 1.0;
optimizerScales[2] = 1.0;
optimizerScales[3] = 1.0;
optimizerScales[4] = translationScale;
optimizerScales[5] = translationScale;
optimizer->SetScales( optimizerScales );
//
// Create the Command observer and register it with the optimizer.
//
CommandIterationUpdate19::Pointer observer = CommandIterationUpdate19::New();
optimizer->AddObserver( itk::IterationEvent(), observer );
// The registration process is triggered by an invocation of the
// \code{Update()} method. If something goes wrong during the
// initialization or execution of the registration an exception will be
// thrown. We should therefore place the \code{Update()} method
// in a \code{try/catch} block as illustrated in the following lines.
//
try
{
// print out the initial metric value. need to initialize the
// registration method to force all the connections to be established.
registration->Initialize();
std::cout <<
"Initial Metric value = "
<< metric->GetValue( initialParameters )
<< std::endl;
// run the registration
registration->Update();
std::cout <<
"Optimizer stop condition = "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch
(
itk::ExceptionObject
& err )
{
std::cout <<
"ExceptionObject caught !"
<< std::endl;
std::cout << err << std::endl;
return
EXIT_FAILURE;
}
// In a real application, you may attempt to recover from the error in the
// catch block. Here we are simply printing out a message and then
// terminating the execution of the program.
//
//
// The result of the registration process is an array of parameters that
// defines the spatial transformation in an unique way. This final result is
// obtained using the \code{GetLastTransformParameters()} method.
//
// \index{itk::RegistrationMethod!GetLastTransformParameters()}
//
ParametersType finalParameters = registration->GetLastTransformParameters();
// In the case of the \doxygen{AffineTransform}, there is a straightforward
// interpretation of the parameters. The last two elements of the array
// corresponds to a translation along one spatial dimension.
//
const
double
TranslationAlongX = finalParameters[4];
const
double
TranslationAlongY = finalParameters[5];
// The optimizer can be queried for the actual number of iterations
// performed to reach convergence.
//
const
unsigned
int
numberOfIterations
= optimizer->GetOptimizer()->get_num_evaluations();
// The value of the image metric corresponding to the last set of parameters
// can be obtained with the \code{GetValue()} method of the optimizer. Since
// the AmoebaOptimizer does not yet support a call to GetValue(), we will
// simply re-evaluate the metric at the final parameters.
//
const
double
bestValue = metric->GetValue(finalParameters);
// Print out results
//
std::cout <<
"Result = "
<< std::endl;
std::cout <<
" Translation X = "
<< TranslationAlongX << std::endl;
std::cout <<
" Translation Y = "
<< TranslationAlongY << std::endl;
std::cout <<
" Iterations = "
<< numberOfIterations << std::endl;
std::cout <<
" Metric value = "
<< bestValue << std::endl;
// It is common, as the last step of a registration task, to use the
// resulting transform to map the moving image into the fixed image space.
// This is easily done with the \doxygen{ResampleImageFilter}. Please
// refer to Section~\ref{sec:ResampleImageFilter} for details on the use
// of this filter. First, a ResampleImageFilter type is instantiated
// using the image types. It is convenient to use the fixed image type as
// the output type since it is likely that the transformed moving image
// will be compared with the fixed image.
//
using
ResampleFilterType =
itk::ResampleImageFilter
<
MovingImageType,
FixedImageType >;
// A transform of the same type used in the registration process should be
// created and initialized with the parameters resulting from the
// registration process.
//
// \index{itk::ImageRegistrationMethod!Resampling image}
//
TransformType::Pointer finalTransform = TransformType::New();
finalTransform->SetParameters( finalParameters );
finalTransform->SetFixedParameters( transform->GetFixedParameters() );
std::cout <<
"Final Transform "
<< std::endl;
finalTransform->Print( std::cout );
// Then a resampling filter is created and the corresponding transform and
// moving image connected as inputs.
//
ResampleFilterType::Pointer resample = ResampleFilterType::New();
resample->SetTransform( finalTransform );
resample->SetInput( movingImageReader->GetOutput() );
// As described in Section \ref{sec:ResampleImageFilter}, the
// ResampleImageFilter requires additional parameters to be
// specified, in particular, the spacing, origin and size of the output
// image. The default pixel value is also set to the standard label
// for "unknown" or background. Finally, we need to set the
// interpolator to be the same type of interpolator as the
// registration method used (nearest neighbor).
//
FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
resample->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resample->SetOutputOrigin( fixedImage->GetOrigin() );
resample->SetOutputSpacing( fixedImage->GetSpacing() );
resample->SetOutputDirection( fixedImage->GetDirection() );
resample->SetDefaultPixelValue( 0 );
resample->SetInterpolator( interpolator );
// The output of the filter is passed to a writer that will store the
// image in a file. An \doxygen{CastImageFilter} is used to convert the
// pixel type of the resampled image to the final type used by the
// writer. The cast and writer filters are instantiated below.
//
using
OutputPixelType =
unsigned
short;
using
OutputImageType =
itk::Image< OutputPixelType, Dimension >
;
using
CastFilterType =
itk::CastImageFilter
<
FixedImageType,
OutputImageType >;
using
WriterType =
itk::ImageFileWriter< OutputImageType >
;
// The filters are created by invoking their \code{New()}
// method.
//
WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer caster = CastFilterType::New();
writer->SetFileName( argv[3] );
// The \code{Update()} method of the writer is invoked in order to trigger
// the execution of the pipeline.
//
caster->SetInput( resample->GetOutput() );
writer->SetInput( caster->GetOutput() );
writer->Update();
//
// The fixed image and the transformed moving image can easily be compared
// using the \code{SquaredDifferenceImageFilter}. This pixel-wise
// filter computes the squared value of the difference between homologous
// pixels of its input images.
//
using
DifferenceFilterType =
itk::SquaredDifferenceImageFilter
<
FixedImageType,
FixedImageType,
OutputImageType >;
DifferenceFilterType::Pointer difference = DifferenceFilterType::New();
difference->SetInput1( fixedImageReader->GetOutput() );
difference->SetInput2( resample->GetOutput() );
// Its output can be passed to another writer.
//
WriterType::Pointer writer2 = WriterType::New();
writer2->SetInput( difference->GetOutput() );
if
( argc > 4 )
{
writer2->SetFileName( argv[4] );
writer2->Update();
}
return
EXIT_SUCCESS;
}
Generated on Sun Mar 24 2019 02:34:44 for ITK by
1.8.5