ITK
5.0.0
Insight Segmentation and Registration Toolkit
Main Page
Related Pages
Modules
Namespaces
Classes
Files
Examples
Examples/RegistrationITKv4/ImageRegistration7.cxx
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySliceBorder20.png}
// INPUTS: {BrainProtonDensitySliceR10X13Y17S12.png}
// OUTPUTS: {ImageRegistration7Output.png}
// OUTPUTS: {ImageRegistration7DifferenceBefore.png}
// OUTPUTS: {ImageRegistration7DifferenceAfter.png}
// ARGUMENTS: 1.0 1.0 0.0
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// This example illustrates the use of the \doxygen{Simularity2DTransform}
// class for performing registration in $2D$. The example code is for
// the most part identical to the code presented in Section
// \ref{sec:InitializingRegistrationWithMoments}. The main difference is the
// use of \doxygen{Simularity2DTransform} here rather than the
// \doxygen{Euler2DTransform} class.
//
// A similarity transform can be seen as a composition of rotations,
// translations and uniform $\left(\text{isotropic}\right)$ scaling. It
// preserves angles and maps lines into
// lines. This transform is implemented in the toolkit as deriving from a rigid
// $2D$ transform and with a scale parameter added.
//
// When using this transform, attention should be paid to the fact that scaling
// and translations are not independent. In the same way that rotations can
// locally be seen as translations, scaling also results in local displacements.
// Scaling is performed in general with respect to the origin of coordinates.
// However, we already saw how ambiguous that could be in the case of
// rotations. For this reason, this transform also allows users to setup a
// specific center. This center is used both for rotation and scaling.
//
//
// \index{itk::Simularity2DTransform}
//
// Software Guide : EndLatex
#include "
itkImageRegistrationMethodv4.h
"
#include "
itkMeanSquaresImageToImageMetricv4.h
"
#include "
itkRegularStepGradientDescentOptimizerv4.h
"
#include "
itkCenteredTransformInitializer.h
"
// Software Guide : BeginLatex
//
// In addition to the headers included in previous examples, here the
// following header must be included.
//
// \index{itk::Simularity2DTransform!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "
itkSimilarity2DTransform.h
"
// Software Guide : EndCodeSnippet
#include "
itkImageFileReader.h
"
#include "
itkImageFileWriter.h
"
#include "
itkResampleImageFilter.h
"
#include "
itkCastImageFilter.h
"
#include "
itkSubtractImageFilter.h
"
#include "
itkRescaleIntensityImageFilter.h
"
#include "
itkIdentityTransform.h
"
// The following section of code implements a Command observer
// that will monitor the evolution of the registration process.
//
#include "
itkCommand.h
"
class
CommandIterationUpdate :
public
itk::Command
{
public
:
using
Self = CommandIterationUpdate;
using
Superclass =
itk::Command
;
using
Pointer =
itk::SmartPointer<Self>
;
itkNewMacro( Self );
protected
:
CommandIterationUpdate() =
default
;
public
:
using
OptimizerType =
itk::RegularStepGradientDescentOptimizerv4<double>
;
using
OptimizerPointer =
const
OptimizerType *;
void
Execute
(
itk::Object
*caller,
const
itk::EventObject
& event)
override
{
Execute
( (
const
itk::Object
*)caller, event);
}
void
Execute
(
const
itk::Object
*
object
,
const
itk::EventObject
& event)
override
{
auto
optimizer =
static_cast<
OptimizerPointer
>
( object );
if
( ! itk::IterationEvent().CheckEvent( &event ) )
{
return
;
}
std::cout << optimizer->GetCurrentIteration() <<
" "
;
std::cout << optimizer->GetValue() <<
" "
;
std::cout << optimizer->GetCurrentPosition() << std::endl;
}
};
int
main(
int
argc,
char
*argv[] )
{
if
( argc < 4 )
{
std::cerr <<
"Missing Parameters "
<< std::endl;
std::cerr <<
"Usage: "
<< argv[0];
std::cerr <<
" fixedImageFile movingImageFile "
;
std::cerr <<
" outputImagefile [differenceBeforeRegistration] "
;
std::cerr <<
" [differenceAfterRegistration] "
;
std::cerr <<
" [steplength] "
;
std::cerr <<
" [initialScaling] [initialAngle] "
;
std::cerr << std::endl;
return
EXIT_FAILURE;
}
constexpr
unsigned
int
Dimension
= 2;
using
PixelType = float;
using
FixedImageType =
itk::Image< PixelType, Dimension >
;
using
MovingImageType =
itk::Image< PixelType, Dimension >
;
// Software Guide : BeginLatex
//
// The Transform class is instantiated using the code below. The only
// template parameter of this class is the representation type of the
// space coordinates.
//
// \index{itk::Simularity2DTransform!Instantiation}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using
TransformType =
itk::Similarity2DTransform< double >
;
// Software Guide : EndCodeSnippet
using
OptimizerType =
itk::RegularStepGradientDescentOptimizerv4<double>
;
using
MetricType =
itk::MeanSquaresImageToImageMetricv4
< FixedImageType,
MovingImageType >;
using
RegistrationType =
itk::ImageRegistrationMethodv4
< FixedImageType,
MovingImageType,
TransformType >;
MetricType::Pointer metric = MetricType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
RegistrationType::Pointer registration = RegistrationType::New();
registration->SetMetric( metric );
registration->SetOptimizer( optimizer );
// Software Guide : BeginLatex
//
// As before, the transform object is constructed and initialized before it
// is passed to the registration filter.
//
// \index{itk::Simularity2DTransform!Pointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
TransformType::Pointer transform = TransformType::New();
// Software Guide : EndCodeSnippet
using
FixedImageReaderType =
itk::ImageFileReader< FixedImageType >
;
using
MovingImageReaderType =
itk::ImageFileReader< MovingImageType >
;
FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New();
MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName( argv[1] );
movingImageReader->SetFileName( argv[2] );
registration->SetFixedImage( fixedImageReader->GetOutput() );
registration->SetMovingImage( movingImageReader->GetOutput() );
// Software Guide : BeginLatex
//
// In this example, we again use the helper class
// \doxygen{CenteredTransformInitializer} to compute a reasonable
// value for the initial center of rotation and scaling along with
// an initial translation.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using
TransformInitializerType =
itk::CenteredTransformInitializer
<
TransformType,
FixedImageType,
MovingImageType >;
TransformInitializerType::Pointer initializer
= TransformInitializerType::New();
initializer->SetTransform( transform );
initializer->SetFixedImage( fixedImageReader->GetOutput() );
initializer->SetMovingImage( movingImageReader->GetOutput() );
initializer->MomentsOn();
initializer->InitializeTransform();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The remaining parameters of the transform are initialized below.
//
// \index{itk::Simularity2DTransform!SetScale()}
// \index{itk::Simularity2DTransform!SetAngle()}
//
// Software Guide : EndLatex
double
initialScale = 1.0;
if
( argc > 7 )
{
initialScale = std::stod( argv[7] );
}
double
initialAngle = 0.0;
if
( argc > 8 )
{
initialAngle = std::stod( argv[8] );
}
// Software Guide : BeginCodeSnippet
transform->SetScale( initialScale );
transform->SetAngle( initialAngle );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now the initialized transform object will be set to the registration method,
// and its initial parameters are used to initialize the registration process.
//
// Also, by calling the \code{InPlaceOn()} method, this initialized
// transform will be the output transform
// object or ``grafted'' to the output of the registration process.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
registration->SetInitialTransform( transform );
registration->InPlaceOn();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Keeping in mind that the scale of units in scaling, rotation and
// translation are quite different, we take advantage of the scaling
// functionality provided by the optimizers. We know that the first element
// of the parameters array corresponds to the scale factor, the second
// corresponds to the angle, third and fourth are the remaining
// translation. We use henceforth small factors in the scales
// associated with translations.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using
OptimizerScalesType = OptimizerType::ScalesType;
OptimizerScalesType optimizerScales( transform->GetNumberOfParameters() );
const
double
translationScale = 1.0 / 100.0;
optimizerScales[0] = 10.0;
optimizerScales[1] = 1.0;
optimizerScales[2] = translationScale;
optimizerScales[3] = translationScale;
optimizer->SetScales( optimizerScales );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We also set the ordinary parameters of the optimization method. In this
// case we are using a
// \doxygen{RegularStepGradientDescentOptimizerv4}. Below we define the
// optimization parameters, i.e. initial learning rate (step length), minimal
// step length and number of iterations. The last two act as stopping criteria
// for the optimization.
//
// Software Guide : EndLatex
double
steplength = 1.0;
if
( argc > 6 )
{
steplength = std::stod( argv[6] );
}
// Software Guide : BeginCodeSnippet
optimizer->SetLearningRate( steplength );
optimizer->SetMinimumStepLength( 0.0001 );
optimizer->SetNumberOfIterations( 500 );
// Software Guide : EndCodeSnippet
// Create the Command observer and register it with the optimizer.
//
CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();
optimizer->AddObserver( itk::IterationEvent(), observer );
// One level registration process without shrinking and smoothing.
//
constexpr
unsigned
int
numberOfLevels = 1;
RegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel;
shrinkFactorsPerLevel.SetSize( 1 );
shrinkFactorsPerLevel[0] = 1;
RegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel;
smoothingSigmasPerLevel.SetSize( 1 );
smoothingSigmasPerLevel[0] = 0;
registration->SetNumberOfLevels ( numberOfLevels );
registration->SetSmoothingSigmasPerLevel( smoothingSigmasPerLevel );
registration->SetShrinkFactorsPerLevel( shrinkFactorsPerLevel );
try
{
registration->Update();
std::cout <<
"Optimizer stop condition: "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch
(
itk::ExceptionObject
& err )
{
std::cerr <<
"ExceptionObject caught !"
<< std::endl;
std::cerr << err << std::endl;
return
EXIT_FAILURE;
}
TransformType::ParametersType finalParameters =
transform->GetParameters();
const
double
finalScale = finalParameters[0];
const
double
finalAngle = finalParameters[1];
const
double
finalTranslationX = finalParameters[2];
const
double
finalTranslationY = finalParameters[3];
const
double
rotationCenterX = registration->GetOutput()->Get()->GetFixedParameters()[0];
const
double
rotationCenterY = registration->GetOutput()->Get()->GetFixedParameters()[1];
const
unsigned
int
numberOfIterations = optimizer->GetCurrentIteration();
const
double
bestValue = optimizer->GetValue();
// Print out results
//
const
double
finalAngleInDegrees = finalAngle * 180.0 /
itk::Math::pi
;
std::cout << std::endl;
std::cout <<
"Result = "
<< std::endl;
std::cout <<
" Scale = "
<< finalScale << std::endl;
std::cout <<
" Angle (radians) = "
<< finalAngle << std::endl;
std::cout <<
" Angle (degrees) = "
<< finalAngleInDegrees << std::endl;
std::cout <<
" Translation X = "
<< finalTranslationX << std::endl;
std::cout <<
" Translation Y = "
<< finalTranslationY << std::endl;
std::cout <<
" Fixed Center X = "
<< rotationCenterX << std::endl;
std::cout <<
" Fixed Center Y = "
<< rotationCenterY << std::endl;
std::cout <<
" Iterations = "
<< numberOfIterations << std::endl;
std::cout <<
" Metric value = "
<< bestValue << std::endl;
// Software Guide : BeginLatex
//
// Let's execute this example over some of the images provided in
// \code{Examples/Data}, for example:
//
// \begin{itemize}
// \item \code{BrainProtonDensitySliceBorder20.png}
// \item \code{BrainProtonDensitySliceR10X13Y17S12.png}
// \end{itemize}
//
// The second image is the result of intentionally rotating the first image
// by $10$ degrees, scaling by $1/1.2$ and then translating by $(-13,-17)$.
// Both images have unit-spacing and are shown in Figure
// \ref{fig:FixedMovingImageRegistration7}. The registration takes $53$
// iterations and produces:
//
// \begin{center}
// \begin{verbatim}
// [0.833237, -0.174511, -12.8065, -12.7244 ]
// \end{verbatim}
// \end{center}
//
// That are interpreted as
//
// \begin{itemize}
// \item Scale factor = $0.833237$
// \item Angle = $-0.174511$ radians
// \item Translation = $( -12.8065, -12.7244 )$ millimeters
// \end{itemize}
//
//
// These values approximate the misalignment intentionally introduced into
// the moving image. Since $10$ degrees is about $0.174532$ radians.
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceBorder20}
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceR10X13Y17S12}
// \itkcaption[Fixed and Moving image registered with
// Simularity2DTransform]{Fixed and Moving image provided as input to the
// registration method using the Similarity2D transform.}
// \label{fig:FixedMovingImageRegistration7}
// \end{figure}
//
//
// \begin{figure}
// \center
// \includegraphics[width=0.32\textwidth]{ImageRegistration7Output}
// \includegraphics[width=0.32\textwidth]{ImageRegistration7DifferenceBefore}
// \includegraphics[width=0.32\textwidth]{ImageRegistration7DifferenceAfter}
// \itkcaption[Output of the Simularity2DTransform registration]{Resampled
// moving image (left). Differences between fixed and
// moving images, before (center) and after (right) registration with the
// Similarity2D transform.}
// \label{fig:ImageRegistration7Outputs}
// \end{figure}
//
// Figure \ref{fig:ImageRegistration7Outputs} shows the output of the
// registration. The right image shows the squared magnitude of pixel
// differences between the fixed image and the resampled moving image.
//
// \begin{figure}
// \center
// \includegraphics[height=0.32\textwidth]{ImageRegistration7TraceMetric}
// \includegraphics[height=0.32\textwidth]{ImageRegistration7TraceAngle}
// \includegraphics[height=0.32\textwidth]{ImageRegistration7TraceScale}
// \includegraphics[height=0.32\textwidth]{ImageRegistration7TraceTranslations}
// \itkcaption[Simularity2DTransform registration plots]{Plots of the Metric,
// rotation angle, scale factor, and translations during
// the registration using
// Similarity2D transform.}
// \label{fig:ImageRegistration7Plots}
// \end{figure}
//
// Figure \ref{fig:ImageRegistration7Plots} shows the plots of the main
// output parameters of the registration process. The metric values at every
// iteration are shown on the left. The rotation angle and scale factor values are
// shown in the two center plots while the translation components of the registration
// are presented in the plot on the right.
//
// Software Guide : EndLatex
using
ResampleFilterType =
itk::ResampleImageFilter
< MovingImageType,
FixedImageType >;
ResampleFilterType::Pointer resampler = ResampleFilterType::New();
resampler->SetTransform( transform );
resampler->SetInput( movingImageReader->GetOutput() );
FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
resampler->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resampler->SetOutputOrigin( fixedImage->GetOrigin() );
resampler->SetOutputSpacing( fixedImage->GetSpacing() );
resampler->SetOutputDirection( fixedImage->GetDirection() );
resampler->SetDefaultPixelValue( 100 );
using
OutputPixelType =
unsigned
char;
using
OutputImageType =
itk::Image< OutputPixelType, Dimension >
;
using
CastFilterType =
itk::CastImageFilter< FixedImageType, OutputImageType >
;
using
WriterType =
itk::ImageFileWriter< OutputImageType >
;
WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer caster = CastFilterType::New();
writer->SetFileName( argv[3] );
caster->SetInput( resampler->GetOutput() );
writer->SetInput( caster->GetOutput() );
writer->Update();
using
DifferenceFilterType =
itk::SubtractImageFilter
<
FixedImageType,
FixedImageType,
FixedImageType >;
DifferenceFilterType::Pointer difference = DifferenceFilterType::New();
using
RescalerType =
itk::RescaleIntensityImageFilter
<
FixedImageType,
OutputImageType >;
RescalerType::Pointer intensityRescaler = RescalerType::New();
intensityRescaler->SetInput( difference->GetOutput() );
intensityRescaler->SetOutputMinimum( 0 );
intensityRescaler->SetOutputMaximum( 255 );
difference->SetInput1( fixedImageReader->GetOutput() );
difference->SetInput2( resampler->GetOutput() );
resampler->SetDefaultPixelValue( 1 );
WriterType::Pointer writer2 = WriterType::New();
writer2->SetInput( intensityRescaler->GetOutput() );
// Compute the difference image between the
// fixed and resampled moving image.
if
( argc > 5 )
{
writer2->SetFileName( argv[5] );
writer2->Update();
}
using
IdentityTransformType =
itk::IdentityTransform< double, Dimension >
;
IdentityTransformType::Pointer identity = IdentityTransformType::New();
// Compute the difference image between the
// fixed and moving image before registration.
if
( argc > 4 )
{
resampler->SetTransform( identity );
writer2->SetFileName( argv[4] );
writer2->Update();
}
return
EXIT_SUCCESS;
}
Generated on Sun Mar 24 2019 02:34:45 for ITK by
1.8.5