ITK  5.0.0
Insight Segmentation and Registration Toolkit
Public Types | Public Member Functions | Static Public Member Functions | Protected Member Functions | Protected Attributes | List of all members
itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType > Class Template Reference

#include <itkGradientDescentLineSearchOptimizerv4.h>

+ Inheritance diagram for itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >:
+ Collaboration diagram for itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >:

Detailed Description

template<typename TInternalComputationValueType>
class itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >

Gradient descent optimizer with a golden section line search.

GradientDescentLineSearchOptimizer implements a simple gradient descent optimizer that is followed by a line search to find the best value for the learning rate. At each iteration the current position is updated according to

\[ p_{n+1} = p_n + \mbox{learningRateByGoldenSectionLineSearch} \, \frac{\partial f(p_n) }{\partial p_n} \]

Options are identical to the superclass's except for:

options Epsilon, LowerLimit and UpperLimit that will guide a golden section line search to find the optimal gradient update within the range :

[ learningRate * LowerLimit , learningRate * UpperLimit ]

where Epsilon sets the resolution of the search. Smaller values lead to additional computation time but better localization of the minimum.

By default, this optimizer will return the best value and associated parameters that were calculated during the optimization. See SetReturnBestParametersAndValue().

Definition at line 59 of file itkGradientDescentLineSearchOptimizerv4.h.

Public Types

using ConstPointer = SmartPointer< const Self >
 
using ConvergenceMonitoringType = itk::Function::WindowConvergenceMonitoringFunction< TInternalComputationValueType >
 
using DerivativeType = typename Superclass::DerivativeType
 
using InternalComputationValueType = TInternalComputationValueType
 
using MeasureType = typename Superclass::MeasureType
 
using ParametersType = typename Superclass::ParametersType
 
using Pointer = SmartPointer< Self >
 
using Self = GradientDescentLineSearchOptimizerv4Template
 
using Superclass = GradientDescentOptimizerv4Template< TInternalComputationValueType >
 
- Public Types inherited from itk::GradientDescentOptimizerv4Template< TInternalComputationValueType >
using ConstPointer = SmartPointer< const Self >
 
using DerivativeType = typename Superclass::DerivativeType
 
using IndexRangeType = typename Superclass::IndexRangeType
 
using InternalComputationValueType = TInternalComputationValueType
 
using MeasureType = typename Superclass::MeasureType
 
using ParametersType = typename Superclass::ParametersType
 
using Pointer = SmartPointer< Self >
 
using ScalesType = typename Superclass::ScalesType
 
using Self = GradientDescentOptimizerv4Template
 
using StopConditionType = typename Superclass::StopConditionType
 
using Superclass = GradientDescentOptimizerBasev4Template< TInternalComputationValueType >
 
- Public Types inherited from itk::GradientDescentOptimizerBasev4Template< TInternalComputationValueType >
using ConstPointer = SmartPointer< const Self >
 
using ConvergenceMonitoringType = itk::Function::WindowConvergenceMonitoringFunction< TInternalComputationValueType >
 
using DerivativeType = typename Superclass::DerivativeType
 
using IndexRangeType = ThreadedIndexedContainerPartitioner::IndexRangeType
 
using InternalComputationValueType = TInternalComputationValueType
 
using MeasureType = typename Superclass::MeasureType
 
using MetricType = typename Superclass::MetricType
 
using MetricTypePointer = typename MetricType::Pointer
 
using ParametersType = typename Superclass::ParametersType
 
using Pointer = SmartPointer< Self >
 
using ScalesType = typename Superclass::ScalesType
 
using Self = GradientDescentOptimizerBasev4Template
 
using StopConditionDescriptionType = typename Superclass::StopConditionDescriptionType
 
using StopConditionReturnStringType = typename Superclass::StopConditionReturnStringType
 
enum  StopConditionType {
  MAXIMUM_NUMBER_OF_ITERATIONS,
  COSTFUNCTION_ERROR,
  UPDATE_PARAMETERS_ERROR,
  STEP_TOO_SMALL,
  CONVERGENCE_CHECKER_PASSED,
  GRADIENT_MAGNITUDE_TOLEARANCE,
  OTHER_ERROR
}
 
using Superclass = ObjectToObjectOptimizerBaseTemplate< TInternalComputationValueType >
 
- Public Types inherited from itk::ObjectToObjectOptimizerBaseTemplate< TInternalComputationValueType >
using ConstPointer = SmartPointer< const Self >
 
using DerivativeType = typename MetricType::DerivativeType
 
using MeasureType = typename MetricType::MeasureType
 
using MetricType = ObjectToObjectMetricBaseTemplate< TInternalComputationValueType >
 
using MetricTypePointer = typename MetricType::Pointer
 
using NumberOfParametersType = typename MetricType::NumberOfParametersType
 
using ParametersType = OptimizerParameters< TInternalComputationValueType >
 
using Pointer = SmartPointer< Self >
 
using ScalesEstimatorType = OptimizerParameterScalesEstimatorTemplate< TInternalComputationValueType >
 
using ScalesType = OptimizerParameters< TInternalComputationValueType >
 
using Self = ObjectToObjectOptimizerBaseTemplate
 
using StopConditionDescriptionType = std::ostringstream
 
using StopConditionReturnStringType = std::string
 
using Superclass = Object
 
- Public Types inherited from itk::Object
using ConstPointer = SmartPointer< const Self >
 
using Pointer = SmartPointer< Self >
 
using Self = Object
 
using Superclass = LightObject
 
- Public Types inherited from itk::LightObject
using ConstPointer = SmartPointer< const Self >
 
using Pointer = SmartPointer< Self >
 
using Self = LightObject
 

Public Member Functions

virtual ::itk::LightObject::Pointer CreateAnother () const
 
virtual const char * GetNameOfClass () const
 
virtual void SetEpsilon (TInternalComputationValueType _arg)
 
virtual
TInternalComputationValueType 
GetEpsilon ()
 
virtual void SetLowerLimit (TInternalComputationValueType _arg)
 
virtual
TInternalComputationValueType 
GetLowerLimit ()
 
virtual void SetUpperLimit (TInternalComputationValueType _arg)
 
virtual
TInternalComputationValueType 
GetUpperLimit ()
 
virtual void SetMaximumLineSearchIterations (unsigned int _arg)
 
virtual unsigned int GetMaximumLineSearchIterations ()
 
- Public Member Functions inherited from itk::GradientDescentOptimizerv4Template< TInternalComputationValueType >
virtual ::itk::LightObject::Pointer CreateAnother () const
 
virtual void EstimateLearningRate ()
 
virtual const
TInternalComputationValueType & 
GetConvergenceValue () const
 
void ResumeOptimization () override
 
virtual void SetConvergenceWindowSize (SizeValueType _arg)
 
virtual void SetMinimumConvergenceValue (TInternalComputationValueType _arg)
 
void StartOptimization (bool doOnlyInitialization=false) override
 
void StopOptimization () override
 
virtual void SetLearningRate (TInternalComputationValueType _arg)
 
virtual const
TInternalComputationValueType & 
GetLearningRate () const
 
virtual void SetMaximumStepSizeInPhysicalUnits (TInternalComputationValueType _arg)
 
virtual const
TInternalComputationValueType & 
GetMaximumStepSizeInPhysicalUnits () const
 
virtual void SetDoEstimateLearningRateAtEachIteration (bool _arg)
 
virtual const bool & GetDoEstimateLearningRateAtEachIteration () const
 
virtual void DoEstimateLearningRateAtEachIterationOn ()
 
virtual void DoEstimateLearningRateAtEachIterationOff ()
 
virtual void SetDoEstimateLearningRateOnce (bool _arg)
 
virtual const bool & GetDoEstimateLearningRateOnce () const
 
virtual void DoEstimateLearningRateOnceOn ()
 
virtual void DoEstimateLearningRateOnceOff ()
 
virtual void SetReturnBestParametersAndValue (bool _arg)
 
virtual const bool & GetReturnBestParametersAndValue () const
 
virtual void ReturnBestParametersAndValueOn ()
 
virtual void ReturnBestParametersAndValueOff ()
 
- Public Member Functions inherited from itk::GradientDescentOptimizerBasev4Template< TInternalComputationValueType >
SizeValueType GetCurrentIteration () const override
 
virtual const DerivativeTypeGetGradient () const
 
SizeValueType GetNumberOfIterations () const override
 
virtual const StopConditionTypeGetStopCondition () const
 
const StopConditionReturnStringType GetStopConditionDescription () const override
 
void SetNumberOfIterations (const SizeValueType numberOfIterations) override
 
virtual void ModifyGradientByScales ()
 
virtual void ModifyGradientByLearningRate ()
 
- Public Member Functions inherited from itk::ObjectToObjectOptimizerBaseTemplate< TInternalComputationValueType >
virtual const MeasureTypeGetCurrentMetricValue () const
 
virtual const ParametersTypeGetCurrentPosition () const
 
virtual const ThreadIdTypeGetNumberOfWorkUnits () const
 
virtual const ScalesTypeGetScales () const
 
virtual const bool & GetScalesAreIdentity () const
 
bool GetScalesInitialized () const
 
virtual const MeasureTypeGetValue () const
 
virtual const ScalesTypeGetWeights () const
 
virtual const bool & GetWeightsAreIdentity () const
 
virtual void SetNumberOfWorkUnits (ThreadIdType number)
 
virtual void SetScalesEstimator (ScalesEstimatorType *_arg)
 
virtual void SetWeights (ScalesType _arg)
 
virtual void SetMetric (MetricType *_arg)
 
virtual MetricTypeGetModifiableMetric ()
 
virtual const MetricTypeGetMetric () const
 
virtual void SetScales (const ScalesType &scales)
 
virtual void SetDoEstimateScales (bool _arg)
 
virtual const bool & GetDoEstimateScales () const
 
virtual void DoEstimateScalesOn ()
 
virtual void DoEstimateScalesOff ()
 
- Public Member Functions inherited from itk::Object
unsigned long AddObserver (const EventObject &event, Command *)
 
unsigned long AddObserver (const EventObject &event, Command *) const
 
virtual void DebugOff () const
 
virtual void DebugOn () const
 
CommandGetCommand (unsigned long tag)
 
bool GetDebug () const
 
MetaDataDictionaryGetMetaDataDictionary ()
 
const MetaDataDictionaryGetMetaDataDictionary () const
 
virtual ModifiedTimeType GetMTime () const
 
virtual const TimeStampGetTimeStamp () const
 
bool HasObserver (const EventObject &event) const
 
void InvokeEvent (const EventObject &)
 
void InvokeEvent (const EventObject &) const
 
virtual void Modified () const
 
void Register () const override
 
void RemoveAllObservers ()
 
void RemoveObserver (unsigned long tag)
 
void SetDebug (bool debugFlag) const
 
void SetReferenceCount (int) override
 
void UnRegister () const noexceptoverride
 
void SetMetaDataDictionary (const MetaDataDictionary &rhs)
 
void SetMetaDataDictionary (MetaDataDictionary &&rrhs)
 
virtual void SetObjectName (std::string _arg)
 
virtual const std::string & GetObjectName () const
 
- Public Member Functions inherited from itk::LightObject
virtual void Delete ()
 
virtual int GetReferenceCount () const
 
 itkCloneMacro (Self)
 
void Print (std::ostream &os, Indent indent=0) const
 

Static Public Member Functions

static Pointer New ()
 
- Static Public Member Functions inherited from itk::GradientDescentOptimizerv4Template< TInternalComputationValueType >
static Pointer New ()
 
- Static Public Member Functions inherited from itk::Object
static bool GetGlobalWarningDisplay ()
 
static void GlobalWarningDisplayOff ()
 
static void GlobalWarningDisplayOn ()
 
static Pointer New ()
 
static void SetGlobalWarningDisplay (bool flag)
 
- Static Public Member Functions inherited from itk::LightObject
static void BreakOnError ()
 
static Pointer New ()
 

Protected Member Functions

void AdvanceOneStep () override
 
TInternalComputationValueType GoldenSectionSearch (TInternalComputationValueType a, TInternalComputationValueType b, TInternalComputationValueType c, TInternalComputationValueType metricb=NumericTraits< TInternalComputationValueType >::max())
 
 GradientDescentLineSearchOptimizerv4Template ()
 
void PrintSelf (std::ostream &os, Indent indent) const override
 
 ~GradientDescentLineSearchOptimizerv4Template () override=default
 
- Protected Member Functions inherited from itk::GradientDescentOptimizerv4Template< TInternalComputationValueType >
 GradientDescentOptimizerv4Template ()
 
void ModifyGradientByLearningRateOverSubRange (const IndexRangeType &subrange) override
 
void ModifyGradientByScalesOverSubRange (const IndexRangeType &subrange) override
 
void PrintSelf (std::ostream &os, Indent indent) const override
 
 ~GradientDescentOptimizerv4Template () override=default
 
- Protected Member Functions inherited from itk::GradientDescentOptimizerBasev4Template< TInternalComputationValueType >
 GradientDescentOptimizerBasev4Template ()
 
 ~GradientDescentOptimizerBasev4Template () override=default
 
- Protected Member Functions inherited from itk::ObjectToObjectOptimizerBaseTemplate< TInternalComputationValueType >
void PrintSelf (std::ostream &os, Indent indent) const override
 
 ObjectToObjectOptimizerBaseTemplate ()
 
 ~ObjectToObjectOptimizerBaseTemplate () override
 
- Protected Member Functions inherited from itk::Object
 Object ()
 
bool PrintObservers (std::ostream &os, Indent indent) const
 
virtual void SetTimeStamp (const TimeStamp &time)
 
 ~Object () override
 
- Protected Member Functions inherited from itk::LightObject
virtual LightObject::Pointer InternalClone () const
 
 LightObject ()
 
virtual void PrintHeader (std::ostream &os, Indent indent) const
 
virtual void PrintTrailer (std::ostream &os, Indent indent) const
 
virtual ~LightObject ()
 

Protected Attributes

TInternalComputationValueType m_Epsilon
 
unsigned int m_LineSearchIterations
 
TInternalComputationValueType m_LowerLimit
 
unsigned int m_MaximumLineSearchIterations
 
TInternalComputationValueType m_Phi
 
TInternalComputationValueType m_Resphi
 
TInternalComputationValueType m_UpperLimit
 
- Protected Attributes inherited from itk::GradientDescentOptimizerv4Template< TInternalComputationValueType >
ParametersType m_BestParameters
 
TInternalComputationValueType m_ConvergenceValue
 
MeasureType m_CurrentBestValue
 
TInternalComputationValueType m_LearningRate
 
TInternalComputationValueType m_MinimumConvergenceValue
 
DerivativeType m_PreviousGradient
 
bool m_ReturnBestParametersAndValue { false }
 
- Protected Attributes inherited from itk::GradientDescentOptimizerBasev4Template< TInternalComputationValueType >
ConvergenceMonitoringType::Pointer m_ConvergenceMonitoring
 
SizeValueType m_ConvergenceWindowSize
 
bool m_DoEstimateLearningRateAtEachIteration
 
bool m_DoEstimateLearningRateOnce
 
DerivativeType m_Gradient
 
TInternalComputationValueType m_MaximumStepSizeInPhysicalUnits
 
DomainThreader
< ThreadedIndexedContainerPartitioner,
Self >::Pointer 
m_ModifyGradientByLearningRateThreader
 
DomainThreader
< ThreadedIndexedContainerPartitioner,
Self >::Pointer 
m_ModifyGradientByScalesThreader
 
bool m_Stop {false}
 
StopConditionType m_StopCondition
 
StopConditionDescriptionType m_StopConditionDescription
 
bool m_UseConvergenceMonitoring
 
- Protected Attributes inherited from itk::ObjectToObjectOptimizerBaseTemplate< TInternalComputationValueType >
SizeValueType m_CurrentIteration
 
MeasureType m_CurrentMetricValue
 
bool m_DoEstimateScales
 
MetricTypePointer m_Metric
 
SizeValueType m_NumberOfIterations
 
ThreadIdType m_NumberOfWorkUnits
 
ScalesType m_Scales
 
bool m_ScalesAreIdentity
 
ScalesEstimatorType::Pointer m_ScalesEstimator
 
ScalesType m_Weights
 
bool m_WeightsAreIdentity
 
- Protected Attributes inherited from itk::LightObject
std::atomic< int > m_ReferenceCount
 

Member Typedef Documentation

template<typename TInternalComputationValueType >
using itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::ConstPointer = SmartPointer< const Self >

Definition at line 69 of file itkGradientDescentLineSearchOptimizerv4.h.

template<typename TInternalComputationValueType >
using itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::ConvergenceMonitoringType = itk::Function::WindowConvergenceMonitoringFunction<TInternalComputationValueType>

Type for the convergence checker

Definition at line 88 of file itkGradientDescentLineSearchOptimizerv4.h.

template<typename TInternalComputationValueType >
using itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::DerivativeType = typename Superclass::DerivativeType

Derivative type

Definition at line 81 of file itkGradientDescentLineSearchOptimizerv4.h.

template<typename TInternalComputationValueType >
using itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::InternalComputationValueType = TInternalComputationValueType

It should be possible to derive the internal computation type from the class object.

Definition at line 78 of file itkGradientDescentLineSearchOptimizerv4.h.

template<typename TInternalComputationValueType >
using itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::MeasureType = typename Superclass::MeasureType

Metric type over which this class is templated

Definition at line 84 of file itkGradientDescentLineSearchOptimizerv4.h.

template<typename TInternalComputationValueType >
using itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::ParametersType = typename Superclass::ParametersType

Definition at line 85 of file itkGradientDescentLineSearchOptimizerv4.h.

template<typename TInternalComputationValueType >
using itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::Pointer = SmartPointer< Self >

Definition at line 68 of file itkGradientDescentLineSearchOptimizerv4.h.

template<typename TInternalComputationValueType >
using itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::Self = GradientDescentLineSearchOptimizerv4Template

Standard class type aliases.

Definition at line 66 of file itkGradientDescentLineSearchOptimizerv4.h.

template<typename TInternalComputationValueType >
using itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::Superclass = GradientDescentOptimizerv4Template<TInternalComputationValueType>

Definition at line 67 of file itkGradientDescentLineSearchOptimizerv4.h.

Constructor & Destructor Documentation

template<typename TInternalComputationValueType >
itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::GradientDescentLineSearchOptimizerv4Template ( )
protected

Default constructor

template<typename TInternalComputationValueType >
itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::~GradientDescentLineSearchOptimizerv4Template ( )
overrideprotecteddefault

Destructor

Member Function Documentation

template<typename TInternalComputationValueType >
void itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::AdvanceOneStep ( )
overrideprotectedvirtual

Advance one Step following the gradient direction. Includes transform update.

Reimplemented from itk::GradientDescentOptimizerv4Template< TInternalComputationValueType >.

template<typename TInternalComputationValueType >
virtual::itk::LightObject::Pointer itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::CreateAnother ( ) const
virtual

Create an object from an instance, potentially deferring to a factory. This method allows you to create an instance of an object that is exactly the same type as the referring object. This is useful in cases where an object has been cast back to a base class.

Reimplemented from itk::Object.

template<typename TInternalComputationValueType >
virtual TInternalComputationValueType itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::GetEpsilon ( )
virtual

The epsilon determines the accuracy of the line search i.e. the energy alteration that is considered convergent.

template<typename TInternalComputationValueType >
virtual TInternalComputationValueType itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::GetLowerLimit ( )
virtual

The upper and lower limit below determine the range of values over which the learning rate can be adjusted by the golden section line search. The update can then occur in the range from the smallest change given by : NewParams = OldParams + LowerLimit * gradient to the largest change given by : NewParams = OldParams + UpperLimit * gradient Reasonable values might be 0 and 2.

template<typename TInternalComputationValueType >
virtual unsigned int itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::GetMaximumLineSearchIterations ( )
virtual

The upper and lower limit below determine the range of values over which the learning rate can be adjusted by the golden section line search. The update can then occur in the range from the smallest change given by : NewParams = OldParams + LowerLimit * gradient to the largest change given by : NewParams = OldParams + UpperLimit * gradient Reasonable values might be 0 and 2.

template<typename TInternalComputationValueType >
virtual const char* itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::GetNameOfClass ( ) const
virtual
template<typename TInternalComputationValueType >
virtual TInternalComputationValueType itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::GetUpperLimit ( )
virtual

The upper and lower limit below determine the range of values over which the learning rate can be adjusted by the golden section line search. The update can then occur in the range from the smallest change given by : NewParams = OldParams + LowerLimit * gradient to the largest change given by : NewParams = OldParams + UpperLimit * gradient Reasonable values might be 0 and 2.

template<typename TInternalComputationValueType >
TInternalComputationValueType itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::GoldenSectionSearch ( TInternalComputationValueType  a,
TInternalComputationValueType  b,
TInternalComputationValueType  c,
TInternalComputationValueType  metricb = NumericTraits< TInternalComputationValueType >::max() 
)
protected
template<typename TInternalComputationValueType >
static Pointer itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::New ( )
static

New macro for creation of through a Smart Pointer

template<typename TInternalComputationValueType >
void itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::PrintSelf ( std::ostream &  os,
Indent  indent 
) const
overrideprotectedvirtual

Methods invoked by Print() to print information about the object including superclasses. Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.

Reimplemented from itk::Object.

template<typename TInternalComputationValueType >
virtual void itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::SetEpsilon ( TInternalComputationValueType  _arg)
virtual

The epsilon determines the accuracy of the line search i.e. the energy alteration that is considered convergent.

template<typename TInternalComputationValueType >
virtual void itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::SetLowerLimit ( TInternalComputationValueType  _arg)
virtual

The upper and lower limit below determine the range of values over which the learning rate can be adjusted by the golden section line search. The update can then occur in the range from the smallest change given by : NewParams = OldParams + LowerLimit * gradient to the largest change given by : NewParams = OldParams + UpperLimit * gradient Reasonable values might be 0 and 2.

template<typename TInternalComputationValueType >
virtual void itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::SetMaximumLineSearchIterations ( unsigned int  _arg)
virtual

The upper and lower limit below determine the range of values over which the learning rate can be adjusted by the golden section line search. The update can then occur in the range from the smallest change given by : NewParams = OldParams + LowerLimit * gradient to the largest change given by : NewParams = OldParams + UpperLimit * gradient Reasonable values might be 0 and 2.

template<typename TInternalComputationValueType >
virtual void itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::SetUpperLimit ( TInternalComputationValueType  _arg)
virtual

The upper and lower limit below determine the range of values over which the learning rate can be adjusted by the golden section line search. The update can then occur in the range from the smallest change given by : NewParams = OldParams + LowerLimit * gradient to the largest change given by : NewParams = OldParams + UpperLimit * gradient Reasonable values might be 0 and 2.

Member Data Documentation

template<typename TInternalComputationValueType >
TInternalComputationValueType itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::m_Epsilon
protected

Definition at line 136 of file itkGradientDescentLineSearchOptimizerv4.h.

template<typename TInternalComputationValueType >
unsigned int itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::m_LineSearchIterations
protected

Counts the recursion depth for the golden section search

Definition at line 142 of file itkGradientDescentLineSearchOptimizerv4.h.

template<typename TInternalComputationValueType >
TInternalComputationValueType itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::m_LowerLimit
protected

Definition at line 132 of file itkGradientDescentLineSearchOptimizerv4.h.

template<typename TInternalComputationValueType >
unsigned int itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::m_MaximumLineSearchIterations
protected

Controls the maximum recursion depth for the golden section search

Definition at line 139 of file itkGradientDescentLineSearchOptimizerv4.h.

template<typename TInternalComputationValueType >
TInternalComputationValueType itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::m_Phi
protected

Definition at line 134 of file itkGradientDescentLineSearchOptimizerv4.h.

template<typename TInternalComputationValueType >
TInternalComputationValueType itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::m_Resphi
protected

Definition at line 135 of file itkGradientDescentLineSearchOptimizerv4.h.

template<typename TInternalComputationValueType >
TInternalComputationValueType itk::GradientDescentLineSearchOptimizerv4Template< TInternalComputationValueType >::m_UpperLimit
protected

Definition at line 133 of file itkGradientDescentLineSearchOptimizerv4.h.


The documentation for this class was generated from the following file: