ITK  5.0.0
Insight Segmentation and Registration Toolkit
Public Types | Public Member Functions | Static Public Member Functions | Protected Member Functions | Private Attributes | List of all members
itk::Statistics::MaximumRatioDecisionRule Class Reference

#include <itkMaximumRatioDecisionRule.h>

+ Inheritance diagram for itk::Statistics::MaximumRatioDecisionRule:
+ Collaboration diagram for itk::Statistics::MaximumRatioDecisionRule:

Detailed Description

A decision rule that operates as a frequentist's approximation to Bayes rule.

MaximumRatioDecisionRule returns the class label using a Bayesian style decision rule. The discriminant scores are evaluated in the context of class priors. If the discriminant scores are actual conditional probabilites (likelihoods) and the class priors are actual a priori class probabilities, then this decision rule operates as Bayes rule, returning the class $i$ if $p(x|i) p(i) > p(x|j) p(j)$ for all class $j$. The discriminant scores and priors are not required to be true probabilities.

This class is named the MaximumRatioDecisionRule as it can be implemented as returning the class $i$ if $\frac{p(x|i)}{p(x|j)} > \frac{p(j)}{p(i)}$ for all class $j$.

A priori values need to be set before calling the Evaluate method. If they are not set, a uniform prior is assumed.

See Also
MaximumDecisionRule, MinimumDecisionRule
Examples:
Examples/Statistics/BayesianPluginClassifier.cxx, and Examples/Statistics/MaximumRatioDecisionRule.cxx.

Definition at line 58 of file itkMaximumRatioDecisionRule.h.

Public Types

using ClassIdentifierType = Superclass::ClassIdentifierType
 
using MembershipValueType = Superclass::MembershipValueType
 
using MembershipVectorType = Superclass::MembershipVectorType
 
using Pointer = SmartPointer< Self >
 
using PriorProbabilityValueType = MembershipValueType
 
using PriorProbabilityVectorSizeType = PriorProbabilityVectorType::size_type
 
using PriorProbabilityVectorType = std::vector< PriorProbabilityValueType >
 
using Self = MaximumRatioDecisionRule
 
using Superclass = DecisionRule
 
- Public Types inherited from itk::Statistics::DecisionRule
using ClassIdentifierType = MembershipVectorType::size_type
 
using ConstPointer = SmartPointer< const Self >
 
using MembershipValueType = double
 
using MembershipVectorType = std::vector< MembershipValueType >
 
using Pointer = SmartPointer< Self >
 
using Self = DecisionRule
 
using Superclass = Object
 
- Public Types inherited from itk::Object
using ConstPointer = SmartPointer< const Self >
 
using Pointer = SmartPointer< Self >
 
using Self = Object
 
using Superclass = LightObject
 
- Public Types inherited from itk::LightObject
using ConstPointer = SmartPointer< const Self >
 
using Pointer = SmartPointer< Self >
 
using Self = LightObject
 

Public Member Functions

virtual ::itk::LightObject::Pointer CreateAnother () const
 
ClassIdentifierType Evaluate (const MembershipVectorType &discriminantScores) const override
 
virtual const char * GetNameOfClass () const
 
virtual const
PriorProbabilityVectorType
GetPriorProbabilities () const
 
void SetPriorProbabilities (const PriorProbabilityVectorType &p)
 
- Public Member Functions inherited from itk::Object
unsigned long AddObserver (const EventObject &event, Command *)
 
unsigned long AddObserver (const EventObject &event, Command *) const
 
virtual void DebugOff () const
 
virtual void DebugOn () const
 
CommandGetCommand (unsigned long tag)
 
bool GetDebug () const
 
MetaDataDictionaryGetMetaDataDictionary ()
 
const MetaDataDictionaryGetMetaDataDictionary () const
 
virtual ModifiedTimeType GetMTime () const
 
virtual const TimeStampGetTimeStamp () const
 
bool HasObserver (const EventObject &event) const
 
void InvokeEvent (const EventObject &)
 
void InvokeEvent (const EventObject &) const
 
virtual void Modified () const
 
void Register () const override
 
void RemoveAllObservers ()
 
void RemoveObserver (unsigned long tag)
 
void SetDebug (bool debugFlag) const
 
void SetReferenceCount (int) override
 
void UnRegister () const noexceptoverride
 
void SetMetaDataDictionary (const MetaDataDictionary &rhs)
 
void SetMetaDataDictionary (MetaDataDictionary &&rrhs)
 
virtual void SetObjectName (std::string _arg)
 
virtual const std::string & GetObjectName () const
 
- Public Member Functions inherited from itk::LightObject
virtual void Delete ()
 
virtual int GetReferenceCount () const
 
 itkCloneMacro (Self)
 
void Print (std::ostream &os, Indent indent=0) const
 

Static Public Member Functions

static Pointer New ()
 
- Static Public Member Functions inherited from itk::Object
static bool GetGlobalWarningDisplay ()
 
static void GlobalWarningDisplayOff ()
 
static void GlobalWarningDisplayOn ()
 
static Pointer New ()
 
static void SetGlobalWarningDisplay (bool flag)
 
- Static Public Member Functions inherited from itk::LightObject
static void BreakOnError ()
 
static Pointer New ()
 

Protected Member Functions

 MaximumRatioDecisionRule ()
 
void PrintSelf (std::ostream &os, Indent indent) const override
 
 ~MaximumRatioDecisionRule () override=default
 
- Protected Member Functions inherited from itk::Statistics::DecisionRule
 DecisionRule ()
 
 ~DecisionRule () override
 
- Protected Member Functions inherited from itk::Object
 Object ()
 
bool PrintObservers (std::ostream &os, Indent indent) const
 
virtual void SetTimeStamp (const TimeStamp &time)
 
 ~Object () override
 
- Protected Member Functions inherited from itk::LightObject
virtual LightObject::Pointer InternalClone () const
 
 LightObject ()
 
virtual void PrintHeader (std::ostream &os, Indent indent) const
 
virtual void PrintTrailer (std::ostream &os, Indent indent) const
 
virtual ~LightObject ()
 

Private Attributes

PriorProbabilityVectorType m_PriorProbabilities
 

Additional Inherited Members

- Protected Attributes inherited from itk::LightObject
std::atomic< int > m_ReferenceCount
 

Member Typedef Documentation

using itk::Statistics::MaximumRatioDecisionRule::ClassIdentifierType = Superclass::ClassIdentifierType

Types for class identifiers.

Definition at line 79 of file itkMaximumRatioDecisionRule.h.

Types for discriminant values and vectors.

Definition at line 75 of file itkMaximumRatioDecisionRule.h.

using itk::Statistics::MaximumRatioDecisionRule::MembershipVectorType = Superclass::MembershipVectorType

Definition at line 76 of file itkMaximumRatioDecisionRule.h.

Definition at line 66 of file itkMaximumRatioDecisionRule.h.

Types for priors and values

Definition at line 82 of file itkMaximumRatioDecisionRule.h.

Definition at line 84 of file itkMaximumRatioDecisionRule.h.

Definition at line 83 of file itkMaximumRatioDecisionRule.h.

Standard class type aliases

Definition at line 64 of file itkMaximumRatioDecisionRule.h.

Definition at line 65 of file itkMaximumRatioDecisionRule.h.

Constructor & Destructor Documentation

itk::Statistics::MaximumRatioDecisionRule::MaximumRatioDecisionRule ( )
protected
itk::Statistics::MaximumRatioDecisionRule::~MaximumRatioDecisionRule ( )
overrideprotecteddefault

Member Function Documentation

virtual::itk::LightObject::Pointer itk::Statistics::MaximumRatioDecisionRule::CreateAnother ( ) const
virtual

Create an object from an instance, potentially deferring to a factory. This method allows you to create an instance of an object that is exactly the same type as the referring object. This is useful in cases where an object has been cast back to a base class.

Reimplemented from itk::Object.

ClassIdentifierType itk::Statistics::MaximumRatioDecisionRule::Evaluate ( const MembershipVectorType discriminantScores) const
overridevirtual

Evaluate the decision rule $p(x|i) p(i) > p(x|j) p(j)$. Prior probabilities need to be set before calling Evaluate() using the SetPriorProbabilities() method (otherwise a uniform prior is assumed). Parameter to Evaluate() is the discriminant score in the form of a likelihood $p(x|i)$.

Implements itk::Statistics::DecisionRule.

virtual const char* itk::Statistics::MaximumRatioDecisionRule::GetNameOfClass ( ) const
virtual

Run-time type information (and related methods)

Reimplemented from itk::Statistics::DecisionRule.

virtual const PriorProbabilityVectorType& itk::Statistics::MaximumRatioDecisionRule::GetPriorProbabilities ( ) const
virtual

Get the prior probabilities.

static Pointer itk::Statistics::MaximumRatioDecisionRule::New ( )
static

Standard New() method support

void itk::Statistics::MaximumRatioDecisionRule::PrintSelf ( std::ostream &  os,
Indent  indent 
) const
overrideprotectedvirtual

Methods invoked by Print() to print information about the object including superclasses. Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.

Reimplemented from itk::Object.

void itk::Statistics::MaximumRatioDecisionRule::SetPriorProbabilities ( const PriorProbabilityVectorType p)

Set the prior probabilities used in evaluating $p(x|i) p(i) > p(x|j) p(j)$. The likelihoods are set using the Evaluate() method. SetPriorProbabilities needs to be called before Evaluate(). If not set, assumes a uniform prior.

Member Data Documentation

PriorProbabilityVectorType itk::Statistics::MaximumRatioDecisionRule::m_PriorProbabilities
private

Definition at line 110 of file itkMaximumRatioDecisionRule.h.


The documentation for this class was generated from the following file: