ITK
5.2.0
Insight Toolkit
Examples/RegistrationITKv4/ImageRegistration3.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// Given the numerous parameters involved in tuning a registration method for
// a particular application, it is not uncommon for a registration process to
// run for several minutes and still produce a useless result. To avoid
// this situation it is quite helpful to track the evolution of the
// registration as it progresses. The following section illustrates the
// mechanisms provided in ITK for monitoring the activity of the
// ImageRegistrationMethodv4 class.
//
// Insight implements the \emph{Observer/Command} design pattern
// \cite{Gamma1995}.
// The classes involved in this implementation are the \doxygen{Object},
// \doxygen{Command} and \doxygen{EventObject} classes. The Object
// is the base class of most ITK objects. This class maintains a linked
// list of pointers to event observers. The role of observers is played by
// the Command class. Observers register themselves with an
// Object, declaring that they are interested in receiving
// notification when a particular event happens. A set of events is
// represented by the hierarchy of the Event class. Typical events
// are \code{Start}, \code{End}, \code{Progress} and \code{Iteration}.
//
// Registration is controlled by an \doxygen{Optimizer}, which generally
// executes an iterative process. Most Optimizer classes invoke an
// \doxygen{IterationEvent} at the end of each iteration. When an event is
// invoked by an object, this object goes through its list of registered
// observers (Commands) and checks whether any one of them has expressed
// interest in the current event type. Whenever such an observer is found,
// its corresponding \code{Execute()} method is invoked. In this context,
// \code{Execute()} methods should be considered \emph{callbacks}. As such,
// some of the common sense rules of callbacks should be respected. For
// example, \code{Execute()} methods should not perform heavy computational
// tasks. They are expected to execute rapidly, for example, printing out a
// message or updating a value in a GUI.
//
// \index{itk::ImageRegistrationMethod!Monitoring}
//
//
// Software Guide : EndLatex
#include "
itkImageRegistrationMethodv4.h
"
#include "
itkTranslationTransform.h
"
#include "
itkMeanSquaresImageToImageMetricv4.h
"
#include "
itkRegularStepGradientDescentOptimizerv4.h
"
#include "
itkImageFileReader.h
"
#include "
itkImageFileWriter.h
"
#include "
itkResampleImageFilter.h
"
#include "
itkCastImageFilter.h
"
// Software Guide : BeginLatex
//
// The following code illustrates a simple way of creating a
// Observer/Command to monitor a registration process. This new
// class derives from the Command class and provides a specific
// implementation of the \code{Execute()} method. First, the header file of
// the Command class must be included.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "
itkCommand.h
"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Our custom command class is called \code{CommandIterationUpdate}. It
// derives from the Command class and declares for convenience the
// types \code{Self} and \code{Superclass}. This facilitates the use of
// standard macros later in the class implementation.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
class
CommandIterationUpdate :
public
itk::Command
{
public
:
using
Self = CommandIterationUpdate;
using
Superclass =
itk::Command
;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The following type alias declares the type of the SmartPointer capable
// of holding a reference to this object.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using
Pointer =
itk::SmartPointer<Self>
;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The \code{itkNewMacro} takes care of defining all the necessary code for
// the \code{New()} method. Those with curious minds are invited to see the
// details of the macro in the file \code{itkMacro.h} in the
// \code{Insight/Code/Common} directory.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
itkNewMacro(Self);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In order to ensure that the \code{New()} method is used to instantiate
// the class (and not the C++ \code{new} operator), the constructor is
// declared \code{protected}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
protected
:
CommandIterationUpdate() =
default
;
// Software Guide : EndCodeSnippet
public
:
// Software Guide : BeginLatex
//
// Since this Command object will be observing the optimizer,
// the following type alias are useful for converting pointers when the
// \code{Execute()} method is invoked. Note the use of \code{const} on
// the declaration of \code{OptimizerPointer}. This is relevant since, in
// this case, the observer is not intending to modify the optimizer in any
// way. A \code{const} interface ensures that all operations invoked on the
// optimizer are read-only.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using
OptimizerType =
itk::RegularStepGradientDescentOptimizerv4<double>
;
using
OptimizerPointer =
const
OptimizerType *;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// ITK enforces const-correctness. There is hence a distinction between the
// \code{Execute()} method that can be invoked from a \code{const} object
// and the one that can be invoked from a non-\code{const} object. In this
// particular example the non-\code{const} version simply invoke the
// \code{const} version. In a more elaborate situation the implementation
// of both \code{Execute()} methods could be quite different. For example,
// you could imagine a non-\code{const} interaction in which the observer
// decides to stop the optimizer in response to a divergent behavior. A
// similar case could happen when a user is controlling the registration
// process from a GUI.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
void
Execute
(
itk::Object
* caller,
const
itk::EventObject
& event)
override
{
Execute
((
const
itk::Object
*)caller, event);
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally we get to the heart of the observer, the \code{Execute()} method.
// Two arguments are passed to this method. The first argument is the
// pointer to the object that invoked the event. The second argument is the
// event that was invoked.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
void
Execute
(
const
itk::Object
*
object
,
const
itk::EventObject
& event)
override
{
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Note that the first argument is a pointer to an Object even
// though the actual object invoking the event is probably a subclass of
// Object. In our case we know that the actual object is an
// optimizer. Thus we can perform a \code{dynamic\_cast} to the real type
// of the object.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto
optimizer = static_cast<OptimizerPointer>(
object
);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The next step is to verify that the event invoked is actually the one
// in which we are interested. This is checked using the
// RTTI\footnote{RTTI stands for: Run-Time Type Information} support. The
// \code{CheckEvent()} method allows us to compare the actual type of two
// events. In this case we compare the type of the received event with
// an IterationEvent. The comparison will return true if \code{event} is
// of type \code{IterationEvent} or derives from \code{IterationEvent}.
// If we find that the event is not of the expected type then the
// \code{Execute()} method of this command observer should return without
// any further action.
//
// \index{itk::EventObject!CheckEvent}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
if
(!itk::IterationEvent().CheckEvent(&event))
{
return
;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// If the event matches the type we are looking for, we are ready to
// query data from the optimizer. Here, for example, we get the current
// number of iterations, the current value of the cost function and the
// current position on the parameter space. All of these values are
// printed to the standard output. You could imagine more elaborate
// actions like updating a GUI or refreshing a visualization pipeline.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
std::cout << optimizer->GetCurrentIteration() <<
" = "
;
std::cout << optimizer->GetValue() <<
" : "
;
std::cout << optimizer->GetCurrentPosition() << std::endl;
// Software Guide : EndCodeSnippet
}
// Software Guide : BeginLatex
//
// This concludes our implementation of a minimal Command class
// capable of observing our registration method. We can now move on to
// configuring the registration process.
//
// Software Guide : EndLatex
};
int
main(
int
argc,
char
* argv[])
{
if
(argc < 4)
{
std::cerr <<
"Missing Parameters "
<< std::endl;
std::cerr <<
"Usage: "
<< argv[0];
std::cerr <<
" fixedImageFile movingImageFile "
;
std::cerr <<
"outputImagefile "
<< std::endl;
return
EXIT_FAILURE;
}
constexpr
unsigned
int
Dimension
= 2;
using
PixelType = float;
using
FixedImageType =
itk::Image<PixelType, Dimension>
;
using
MovingImageType =
itk::Image<PixelType, Dimension>
;
using
TransformType =
itk::TranslationTransform<double, Dimension>
;
using
OptimizerType =
itk::RegularStepGradientDescentOptimizerv4<double>
;
using
RegistrationType = itk::
ImageRegistrationMethodv4<FixedImageType, MovingImageType, TransformType>;
using
MetricType =
itk::MeanSquaresImageToImageMetricv4<FixedImageType, MovingImageType>
;
OptimizerType::Pointer optimizer = OptimizerType::New();
RegistrationType::Pointer registration = RegistrationType::New();
registration->SetOptimizer(optimizer);
MetricType::Pointer metric = MetricType::New();
registration->SetMetric(metric);
using
FixedImageReaderType =
itk::ImageFileReader<FixedImageType>
;
using
MovingImageReaderType =
itk::ImageFileReader<MovingImageType>
;
FixedImageReaderType::Pointer fixedImageReader =
FixedImageReaderType::New();
MovingImageReaderType::Pointer movingImageReader =
MovingImageReaderType::New();
fixedImageReader->SetFileName(argv[1]);
movingImageReader->SetFileName(argv[2]);
registration->SetFixedImage(fixedImageReader->GetOutput());
registration->SetMovingImage(movingImageReader->GetOutput());
// Set parameters of the optimizer
//
optimizer->SetLearningRate(4);
optimizer->SetMinimumStepLength(0.001);
optimizer->SetRelaxationFactor(0.5);
optimizer->SetNumberOfIterations(200);
// One level registration process without shrinking and smoothing.
//
constexpr
unsigned
int
numberOfLevels = 1;
RegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel;
shrinkFactorsPerLevel.SetSize(1);
shrinkFactorsPerLevel[0] = 1;
RegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel;
smoothingSigmasPerLevel.SetSize(1);
smoothingSigmasPerLevel[0] = 0;
registration->SetNumberOfLevels(numberOfLevels);
registration->SetSmoothingSigmasPerLevel(smoothingSigmasPerLevel);
registration->SetShrinkFactorsPerLevel(shrinkFactorsPerLevel);
// Software Guide : BeginLatex
//
// Once all the registration components are in place we can create one
// instance of our observer. This is done with the standard \code{New()}
// method and assigned to a SmartPointer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[width=\textwidth]{ImageRegistration3Observer}
// \itkcaption[Command/Observer and the Registration Framework]{Interaction
// between the Command/Observer and the Registration Method.}
// \label{fig:ImageRegistration3Observer}
// \end{figure}
//
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// The newly created command is registered as observer on the
// optimizer, using the \code{AddObserver()} method. Note
// that the event type is provided as the first argument to this
// method. In order for the RTTI mechanism to work correctly, a newly
// created event of the desired type must be passed as the first
// argument. The second argument is simply the smart pointer to the
// observer. Figure \ref{fig:ImageRegistration3Observer} illustrates the
// interaction between the Command/Observer class and the registration
// method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
optimizer->AddObserver(itk::IterationEvent(), observer);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// At this point, we are ready to execute the registration. The
// typical call to \code{Update()} will do it. Note again the
// use of the \code{try/catch} block around the \code{Update()}
// method in case an exception is thrown.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
registration->Update();
std::cout <<
"Optimizer stop condition: "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch
(
const
itk::ExceptionObject & err)
{
std::cout <<
"ExceptionObject caught !"
<< std::endl;
std::cout << err << std::endl;
return
EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The registration process is applied to the following images in
// \code{Examples/Data}:
//
// \begin{itemize}
// \item \code{BrainProtonDensitySliceBorder20.png}
// \item \code{BrainProtonDensitySliceShifted13x17y.png}
// \end{itemize}
//
// It produces the following output.
//
// \begin{verbatim}
// 0 = 4499.45 : [2.9286959512455857, 2.7244705953923805]
// 1 = 3860.84 : [6.135143776902402, 5.115849348610004]
// 2 = 3508.02 : [8.822660051952475, 8.078492808653918]
// 3 = 3117.31 : [10.968558473732326, 11.454158663474674]
// 4 = 2125.43 : [13.105290365964755, 14.835634202454191]
// 5 = 911.308 : [12.75173580401588, 18.819978461140323]
// 6 = 741.417 : [13.139053510563274, 16.857840597942413]
// 7 = 16.8918 : [12.356787624301035, 17.480785285045815]
// 8 = 233.714 : [12.79212443526829, 17.234854683011704]
// 9 = 39.8027 : [13.167510875734614, 16.904574468172815]
// 10 = 16.5731 : [12.938831371165355, 17.005597654570586]
// 11 = 1.68763 : [13.063495692092735, 16.996443033457986]
// 12 = 1.79437 : [13.001061362657559, 16.999307384689935]
// 13 = 0.000762481 : [12.945418587211314, 17.0277701944711]
// 14 = 1.74802 : [12.974454390534774, 17.01621663980765]
// 15 = 0.430253 : [13.002439510423766, 17.002309966416835]
// 16 = 0.00531816 : [12.989877586882951, 16.99301810428082]
// 17 = 0.0721346 : [12.996759235073881, 16.996716492365685]
// 18 = 0.00996773 : [13.00288423694971, 17.00156618393022]
// 19 = 0.00516378 : [12.99928608126834, 17.000045636412015]
// 20 = 0.000228075 : [13.00123653240422, 16.999943471681494]
// \end{verbatim}
// You can verify from the code in the \code{Execute()} method that the
// first column is the iteration number, the second column is the metric
// value and the third and fourth columns are the parameters of the
// transform, which is a $2D$ translation transform in this case. By
// tracking these values as the registration progresses, you will be able
// to determine whether the optimizer is advancing in the right direction
// and whether the step-length is reasonable or not. That will allow you
// to interrupt the registration process and fine-tune parameters without
// having to wait until the optimizer stops by itself.
//
// Software Guide : EndLatex
TransformType::ParametersType finalParameters =
registration->GetOutput()->Get()->GetParameters();
const
double
TranslationAlongX = finalParameters[0];
const
double
TranslationAlongY = finalParameters[1];
const
unsigned
int
numberOfIterations = optimizer->GetCurrentIteration();
const
double
bestValue = optimizer->GetValue();
std::cout <<
"Registration done !"
<< std::endl;
std::cout <<
"Number of iterations = "
<< numberOfIterations << std::endl;
std::cout <<
"Translation along X = "
<< TranslationAlongX << std::endl;
std::cout <<
"Translation along Y = "
<< TranslationAlongY << std::endl;
std::cout <<
"Optimal metric value = "
<< bestValue << std::endl;
// Prepare the resampling filter in order to map the moving image.
//
using
ResampleFilterType =
itk::ResampleImageFilter<MovingImageType, FixedImageType>
;
ResampleFilterType::Pointer resample = ResampleFilterType::New();
resample->SetTransform(registration->GetTransform());
resample->SetInput(movingImageReader->GetOutput());
FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize());
resample->SetOutputOrigin(fixedImage->GetOrigin());
resample->SetOutputSpacing(fixedImage->GetSpacing());
resample->SetOutputDirection(fixedImage->GetDirection());
resample->SetDefaultPixelValue(100);
// Prepare a writer and caster filters to send the resampled moving image to
// a file
//
using
OutputPixelType =
unsigned
char;
using
OutputImageType =
itk::Image<OutputPixelType, Dimension>
;
using
CastFilterType =
itk::CastImageFilter<FixedImageType, OutputImageType>
;
using
WriterType =
itk::ImageFileWriter<OutputImageType>
;
WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer caster = CastFilterType::New();
writer->SetFileName(argv[3]);
caster->SetInput(resample->GetOutput());
writer->SetInput(caster->GetOutput());
writer->Update();
return
EXIT_SUCCESS;
}
itk::CastImageFilter
Casts input pixels to output pixel type.
Definition:
itkCastImageFilter.h:104
itkRegularStepGradientDescentOptimizerv4.h
itkImageFileReader.h
itk::SmartPointer< Self >
itkCastImageFilter.h
itkImageRegistrationMethodv4.h
itkMeanSquaresImageToImageMetricv4.h
itkTranslationTransform.h
itk::ImageFileReader
Data source that reads image data from a single file.
Definition:
itkImageFileReader.h:75
itk::RegularStepGradientDescentOptimizerv4
Regular Step Gradient descent optimizer.
Definition:
itkRegularStepGradientDescentOptimizerv4.h:47
itk::Command
Superclass for callback/observer methods.
Definition:
itkCommand.h:45
itk::ImageFileWriter
Writes image data to a single file.
Definition:
itkImageFileWriter.h:88
itk::Command
class ITK_FORWARD_EXPORT Command
Definition:
itkObject.h:43
itk::TranslationTransform
Translation transformation of a vector space (e.g. space coordinates)
Definition:
itkTranslationTransform.h:43
itk::Command::Execute
virtual void Execute(Object *caller, const EventObject &event)=0
itkImageFileWriter.h
itk::MeanSquaresImageToImageMetricv4
Class implementing a mean squares metric.
Definition:
itkMeanSquaresImageToImageMetricv4.h:46
itk::ResampleImageFilter
Resample an image via a coordinate transform.
Definition:
itkResampleImageFilter.h:90
itk::Object
Base class for most ITK classes.
Definition:
itkObject.h:62
itk::Image
Templated n-dimensional image class.
Definition:
itkImage.h:86
itk::EventObject
Abstraction of the Events used to communicating among filters and with GUIs.
Definition:
itkEventObject.h:57
itkResampleImageFilter.h
itk::GTest::TypedefsAndConstructors::Dimension2::Dimension
constexpr unsigned int Dimension
Definition:
itkGTestTypedefsAndConstructors.h:44
itkCommand.h
Generated on Thu Apr 1 2021 01:33:46 for ITK by
1.8.16