ITK
5.2.0
Insight Toolkit
|
#include <itkImageGaussianModelEstimator.h>
Public Member Functions | |
virtual ::itk::LightObject::Pointer | CreateAnother () const |
virtual const char * | GetNameOfClass () const |
Public Member Functions inherited from itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction > | |
virtual const unsigned int & | GetNumberOfModels () const |
virtual void | SetNumberOfModels (unsigned int _arg) |
virtual void | SetInputImage (InputImageType *_arg) |
virtual InputImageType * | GetModifiableInputImage () |
virtual const InputImageType * | GetInputImage () const |
void | SetMembershipFunctions (MembershipFunctionPointerVector membershipFunctions) |
const MembershipFunctionPointerVector | GetMembershipFunctions () const |
unsigned int | GetNumberOfMembershipFunctions () |
void | DeleteAllMembershipFunctions () |
unsigned int | AddMembershipFunction (MembershipFunctionPointer function) |
void | Update () |
Public Member Functions inherited from itk::LightProcessObject | |
virtual void | AbortGenerateDataOff () |
virtual void | AbortGenerateDataOn () |
virtual const bool & | GetAbortGenerateData () const |
virtual void | SetAbortGenerateData (bool _arg) |
virtual void | SetProgress (float _arg) |
virtual const float & | GetProgress () const |
void | UpdateProgress (float amount) |
virtual void | UpdateOutputData () |
Public Member Functions inherited from itk::Object | |
unsigned long | AddObserver (const EventObject &event, Command *) |
unsigned long | AddObserver (const EventObject &event, Command *) const |
unsigned long | AddObserver (const EventObject &event, std::function< void(const EventObject &)> function) const |
virtual void | DebugOff () const |
virtual void | DebugOn () const |
Command * | GetCommand (unsigned long tag) |
bool | GetDebug () const |
MetaDataDictionary & | GetMetaDataDictionary () |
const MetaDataDictionary & | GetMetaDataDictionary () const |
virtual ModifiedTimeType | GetMTime () const |
virtual const TimeStamp & | GetTimeStamp () const |
bool | HasObserver (const EventObject &event) const |
void | InvokeEvent (const EventObject &) |
void | InvokeEvent (const EventObject &) const |
virtual void | Modified () const |
void | Register () const override |
void | RemoveAllObservers () |
void | RemoveObserver (unsigned long tag) |
void | SetDebug (bool debugFlag) const |
void | SetReferenceCount (int) override |
void | UnRegister () const noexcept override |
void | SetMetaDataDictionary (const MetaDataDictionary &rhs) |
void | SetMetaDataDictionary (MetaDataDictionary &&rrhs) |
virtual void | SetObjectName (std::string _arg) |
virtual const std::string & | GetObjectName () const |
Public Member Functions inherited from itk::LightObject | |
Pointer | Clone () const |
virtual void | Delete () |
virtual int | GetReferenceCount () const |
void | Print (std::ostream &os, Indent indent=0) const |
Static Public Member Functions | |
static Pointer | New () |
Static Public Member Functions inherited from itk::LightProcessObject | |
static Pointer | New () |
Static Public Member Functions inherited from itk::Object | |
static bool | GetGlobalWarningDisplay () |
static void | GlobalWarningDisplayOff () |
static void | GlobalWarningDisplayOn () |
static Pointer | New () |
static void | SetGlobalWarningDisplay (bool val) |
Static Public Member Functions inherited from itk::LightObject | |
static void | BreakOnError () |
static Pointer | New () |
using | MatrixType = vnl_matrix< double > |
using | InputImageSizeType = typename TInputImage::SizeType |
static constexpr unsigned int | VectorDimension = InputImagePixelType::Dimension |
MatrixType | m_NumberOfSamples |
MatrixType | m_Means |
MatrixType * | m_Covariance { nullptr } |
TrainingImagePointer | m_TrainingImage |
virtual void | SetTrainingImage (TrainingImageType *_arg) |
virtual TrainingImageType * | GetModifiableTrainingImage () |
virtual const TrainingImageType * | GetTrainingImage () const |
ImageGaussianModelEstimator ()=default | |
~ImageGaussianModelEstimator () override | |
void | PrintSelf (std::ostream &os, Indent indent) const override |
void | GenerateData () override |
void | EstimateModels () override |
void | EstimateGaussianModelParameters () |
Additional Inherited Members | |
Protected Member Functions inherited from itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction > | |
ImageModelEstimatorBase () | |
~ImageModelEstimatorBase () override=default | |
void | PrintSelf (std::ostream &os, Indent indent) const override |
void | GenerateData () override |
Protected Member Functions inherited from itk::LightProcessObject | |
LightProcessObject () | |
~LightProcessObject () override | |
Protected Member Functions inherited from itk::Object | |
Object () | |
~Object () override | |
bool | PrintObservers (std::ostream &os, Indent indent) const |
virtual void | SetTimeStamp (const TimeStamp &timeStamp) |
Protected Member Functions inherited from itk::LightObject | |
virtual LightObject::Pointer | InternalClone () const |
LightObject () | |
virtual void | PrintHeader (std::ostream &os, Indent indent) const |
virtual void | PrintTrailer (std::ostream &os, Indent indent) const |
virtual | ~LightObject () |
Protected Attributes inherited from itk::LightObject | |
std::atomic< int > | m_ReferenceCount |
Base class for ImageGaussianModelEstimator object.
itkImageGaussianModelEstimator generates the Gaussian model for given tissue types (or class types) in an input training data set for segmentation. The training data set is typically provided as a set of labelled/classified data set by the user. A Gaussian model is generated for each label present in the training data set.
The user should ensure that both the input and training images are of the same size. The input data consists of the raw data and the training data has class labels associated with each pixel.
A zero label is used to identify the background. A model is not calculated for the background (its mean and covariance will be zero). Positive labels are classes for which models will be estimated. Negative labels indicate unlabeled data where no models will be estimated.
This object supports data handling of multiband images. The object accepts the input image in vector format only, where each pixel is a vector and each element of the vector corresponds to an entry from 1 particular band of a multiband dataset. A single band image is treated as a vector image with a single element for every vector. The classified image is treated as a single band scalar image.
This function is templated over the type of input and output images. In addition, a third parameter for the MembershipFunction needs to be specified. In this case a Membership function that stores Gaussian models needs to be specified.
The function EstimateModels() calculates the various models, creates the membership function objects and populates them.
Definition at line 76 of file itkImageGaussianModelEstimator.h.
using itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::ConstPointer = SmartPointer<const Self> |
Definition at line 85 of file itkImageGaussianModelEstimator.h.
using itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::InputImageConstIterator = ImageRegionConstIterator<TInputImage> |
Definition at line 113 of file itkImageGaussianModelEstimator.h.
using itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::InputImageConstPointer = typename TInputImage::ConstPointer |
Definition at line 96 of file itkImageGaussianModelEstimator.h.
using itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::InputImageIterator = ImageRegionIterator<TInputImage> |
Type definitions for the iterators for the input and training images.
Definition at line 112 of file itkImageGaussianModelEstimator.h.
using itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::InputImagePixelType = typename TInputImage::PixelType |
Type definition for the vector associated with input image pixel type.
Definition at line 105 of file itkImageGaussianModelEstimator.h.
using itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::InputImagePointer = typename TInputImage::Pointer |
Definition at line 95 of file itkImageGaussianModelEstimator.h.
|
private |
Dimension of each individual pixel vector.
Definition at line 139 of file itkImageGaussianModelEstimator.h.
using itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::InputImageType = TInputImage |
Type definition for the input image.
Definition at line 94 of file itkImageGaussianModelEstimator.h.
|
private |
Dimension of each individual pixel vector.
Definition at line 137 of file itkImageGaussianModelEstimator.h.
using itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::MembershipFunctionPointer = typename TMembershipFunction::Pointer |
Definition at line 119 of file itkImageGaussianModelEstimator.h.
using itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::MembershipFunctionType = TMembershipFunction |
Type definitions for the membership function .
Definition at line 118 of file itkImageGaussianModelEstimator.h.
using itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::Pointer = SmartPointer<Self> |
Definition at line 84 of file itkImageGaussianModelEstimator.h.
using itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::Self = ImageGaussianModelEstimator |
Standard class type aliases.
Definition at line 82 of file itkImageGaussianModelEstimator.h.
using itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::Superclass = ImageModelEstimatorBase<TInputImage, TMembershipFunction> |
Definition at line 83 of file itkImageGaussianModelEstimator.h.
using itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::TrainingImageConstIterator = ImageRegionConstIterator<TTrainingImage> |
Definition at line 115 of file itkImageGaussianModelEstimator.h.
using itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::TrainingImageConstPointer = typename TTrainingImage::ConstPointer |
Definition at line 101 of file itkImageGaussianModelEstimator.h.
using itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::TrainingImageIterator = ImageRegionIterator<TTrainingImage> |
Definition at line 114 of file itkImageGaussianModelEstimator.h.
using itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::TrainingImagePixelType = typename TTrainingImage::PixelType |
Type definitions for the vector holding training image pixel type.
Definition at line 109 of file itkImageGaussianModelEstimator.h.
using itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::TrainingImagePointer = typename TTrainingImage::Pointer |
Definition at line 100 of file itkImageGaussianModelEstimator.h.
using itk::ImageGaussianModelEstimator< TInputImage, TMembershipFunction, TTrainingImage >::TrainingImageType = TTrainingImage |
Type definitions for the training image.
Definition at line 99 of file itkImageGaussianModelEstimator.h.
|
protecteddefault |
Dimension of each individual pixel vector.
|
overrideprotected |
Dimension of each individual pixel vector.
|
virtual |
Create an object from an instance, potentially deferring to a factory. This method allows you to create an instance of an object that is exactly the same type as the referring object. This is useful in cases where an object has been cast back to a base class.
Reimplemented from itk::LightProcessObject.
|
private |
Dimension of each individual pixel vector.
|
overrideprivatevirtual |
A function that generates the model based on the training input data. Achieves the goal of training the classifier.
Implements itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >.
|
overrideprotectedvirtual |
Starts the image modelling process
Reimplemented from itk::LightProcessObject.
|
virtual |
Dimension of each individual pixel vector.
|
virtual |
Run-time type information (and related methods).
Reimplemented from itk::ImageModelEstimatorBase< TInputImage, TMembershipFunction >.
|
virtual |
Dimension of each individual pixel vector.
|
static |
Method for creation through the object factory.
|
overrideprotectedvirtual |
Dimension of each individual pixel vector.
Reimplemented from itk::LightProcessObject.
|
virtual |
Get/Set the training image.
|
private |
Dimension of each individual pixel vector.
Definition at line 146 of file itkImageGaussianModelEstimator.h.
|
private |
Dimension of each individual pixel vector.
Definition at line 145 of file itkImageGaussianModelEstimator.h.
|
private |
Dimension of each individual pixel vector.
Definition at line 144 of file itkImageGaussianModelEstimator.h.
|
private |
Dimension of each individual pixel vector.
Definition at line 148 of file itkImageGaussianModelEstimator.h.
|
staticconstexprprivate |
Dimension of each individual pixel vector.
Definition at line 142 of file itkImageGaussianModelEstimator.h.