ITK  5.2.0
Insight Toolkit
Public Types | List of all members
itk::Statistics::GaussianMixtureModelComponent< TSample > Class Template Reference

#include <itkGaussianMixtureModelComponent.h>

+ Inheritance diagram for itk::Statistics::GaussianMixtureModelComponent< TSample >:
+ Collaboration diagram for itk::Statistics::GaussianMixtureModelComponent< TSample >:

Public Types

using ConstPointer = SmartPointer< const Self >
 
using Pointer = SmartPointer< Self >
 
using Self = GaussianMixtureModelComponent
 
using Superclass = MixtureModelComponentBase< TSample >
 
- Public Types inherited from itk::Statistics::MixtureModelComponentBase< TSample >
using ConstPointer = SmartPointer< const Self >
 
using MeasurementVectorSizeType = typename TSample::MeasurementVectorSizeType
 
using MeasurementVectorType = typename TSample::MeasurementVectorType
 
using MembershipFunctionType = MembershipFunctionBase< MeasurementVectorType >
 
using ParametersType = Array< double >
 
using Pointer = SmartPointer< Self >
 
using Self = MixtureModelComponentBase
 
using Superclass = Object
 
using WeightArrayType = Array< double >
 
- Public Types inherited from itk::Object
using ConstPointer = SmartPointer< const Self >
 
using Pointer = SmartPointer< Self >
 
using Self = Object
 
using Superclass = LightObject
 
- Public Types inherited from itk::LightObject
using ConstPointer = SmartPointer< const Self >
 
using Pointer = SmartPointer< Self >
 
using Self = LightObject
 
using MeasurementVectorType = typename Superclass::MeasurementVectorType
 
using MeasurementVectorSizeType = typename Superclass::MeasurementVectorSizeType
 
using MembershipFunctionType = typename Superclass::MembershipFunctionType
 
using WeightArrayType = typename Superclass::WeightArrayType
 
using ParametersType = typename Superclass::ParametersType
 
using NativeMembershipFunctionType = GaussianMembershipFunction< MeasurementVectorType >
 
using MeanEstimatorType = WeightedMeanSampleFilter< TSample >
 
using CovarianceEstimatorType = WeightedCovarianceSampleFilter< TSample >
 
using MeanVectorType = typename MeanEstimatorType::OutputType
 
using CovarianceMatrixType = typename CovarianceEstimatorType::OutputType
 
NativeMembershipFunctionType::Pointer m_GaussianMembershipFunction
 
MeanEstimatorType::MeasurementVectorType m_Mean
 
CovarianceEstimatorType::MatrixType m_Covariance
 
MeanEstimatorType::Pointer m_MeanEstimator
 
CovarianceEstimatorType::Pointer m_CovarianceEstimator
 
virtual const char * GetNameOfClass () const
 
virtual ::itk::LightObject::Pointer CreateAnother () const
 
void SetSample (const TSample *sample) override
 
void SetParameters (const ParametersType &parameters) override
 
static Pointer New ()
 
 GaussianMixtureModelComponent ()
 
 ~GaussianMixtureModelComponent () override=default
 
void PrintSelf (std::ostream &os, Indent indent) const override
 
double CalculateParametersChange ()
 
void GenerateData () override
 

Additional Inherited Members

- Public Member Functions inherited from itk::Statistics::MixtureModelComponentBase< TSample >
bool AreParametersModified ()
 
void AreParametersModified (bool flag)
 
double Evaluate (MeasurementVectorType &measurements)
 
virtual ParametersType GetFullParameters ()
 
MembershipFunctionTypeGetMembershipFunction ()
 
double GetMinimalParametersChange ()
 
const TSample * GetSample () const
 
double GetWeight (unsigned int index) const
 
virtual const WeightArrayTypeGetWeights () const
 
void SetMinimalParametersChange (double change)
 
virtual void SetParameters (const ParametersType &parameters)
 
void SetWeight (unsigned int index, double value)
 
virtual void Update ()
 
- Public Member Functions inherited from itk::Object
unsigned long AddObserver (const EventObject &event, Command *)
 
unsigned long AddObserver (const EventObject &event, Command *) const
 
unsigned long AddObserver (const EventObject &event, std::function< void(const EventObject &)> function) const
 
virtual void DebugOff () const
 
virtual void DebugOn () const
 
CommandGetCommand (unsigned long tag)
 
bool GetDebug () const
 
MetaDataDictionaryGetMetaDataDictionary ()
 
const MetaDataDictionaryGetMetaDataDictionary () const
 
virtual ModifiedTimeType GetMTime () const
 
virtual const TimeStampGetTimeStamp () const
 
bool HasObserver (const EventObject &event) const
 
void InvokeEvent (const EventObject &)
 
void InvokeEvent (const EventObject &) const
 
virtual void Modified () const
 
void Register () const override
 
void RemoveAllObservers ()
 
void RemoveObserver (unsigned long tag)
 
void SetDebug (bool debugFlag) const
 
void SetReferenceCount (int) override
 
void UnRegister () const noexcept override
 
void SetMetaDataDictionary (const MetaDataDictionary &rhs)
 
void SetMetaDataDictionary (MetaDataDictionary &&rrhs)
 
virtual void SetObjectName (std::string _arg)
 
virtual const std::string & GetObjectName () const
 
- Public Member Functions inherited from itk::LightObject
Pointer Clone () const
 
virtual void Delete ()
 
virtual int GetReferenceCount () const
 
void Print (std::ostream &os, Indent indent=0) const
 
- Static Public Member Functions inherited from itk::Object
static bool GetGlobalWarningDisplay ()
 
static void GlobalWarningDisplayOff ()
 
static void GlobalWarningDisplayOn ()
 
static Pointer New ()
 
static void SetGlobalWarningDisplay (bool val)
 
- Static Public Member Functions inherited from itk::LightObject
static void BreakOnError ()
 
static Pointer New ()
 
- Protected Member Functions inherited from itk::Statistics::MixtureModelComponentBase< TSample >
 MixtureModelComponentBase ()
 
void PrintSelf (std::ostream &os, Indent indent) const override
 
void SetMembershipFunction (MembershipFunctionType *function)
 
 ~MixtureModelComponentBase () override=default
 
- Protected Member Functions inherited from itk::Object
 Object ()
 
 ~Object () override
 
bool PrintObservers (std::ostream &os, Indent indent) const
 
virtual void SetTimeStamp (const TimeStamp &timeStamp)
 
- Protected Member Functions inherited from itk::LightObject
virtual LightObject::Pointer InternalClone () const
 
 LightObject ()
 
virtual void PrintHeader (std::ostream &os, Indent indent) const
 
virtual void PrintTrailer (std::ostream &os, Indent indent) const
 
virtual ~LightObject ()
 
- Protected Attributes inherited from itk::LightObject
std::atomic< int > m_ReferenceCount
 

Detailed Description

template<typename TSample>
class itk::Statistics::GaussianMixtureModelComponent< TSample >

is a component (derived from MixtureModelComponentBase) for Gaussian class. This class is used in ExpectationMaximizationMixtureModelEstimator.

On every iteration of EM estimation, this class's GenerateData method is called to compute the new distribution parameters.

Recent API changes: The static const macro to get the length of a measurement vector, MeasurementVectorSize has been removed to allow the length of a measurement vector to be specified at run time. It is now obtained at run time from the sample set as input. Please use the function GetMeasurementVectorSize() to get the length.

See also
MixtureModelComponentBase, ExpectationMaximizationMixtureModelEstimator
Examples
Examples/Statistics/ExpectationMaximizationMixtureModelEstimator.cxx, SphinxExamples/src/Numerics/Statistics/2DGaussianMixtureModelExpectMax/Code.cxx, SphinxExamples/src/Numerics/Statistics/DistributeSamplingUsingGMM/Code.cxx, and SphinxExamples/src/Numerics/Statistics/DistributionOfPixelsUsingGMM/Code.cxx.

Definition at line 51 of file itkGaussianMixtureModelComponent.h.

Member Typedef Documentation

◆ ConstPointer

template<typename TSample >
using itk::Statistics::GaussianMixtureModelComponent< TSample >::ConstPointer = SmartPointer<const Self>

Definition at line 58 of file itkGaussianMixtureModelComponent.h.

◆ CovarianceEstimatorType

Typedefs from the superclass

Definition at line 78 of file itkGaussianMixtureModelComponent.h.

◆ CovarianceMatrixType

Type of the covariance matrix

Definition at line 84 of file itkGaussianMixtureModelComponent.h.

◆ MeanEstimatorType

template<typename TSample >
using itk::Statistics::GaussianMixtureModelComponent< TSample >::MeanEstimatorType = WeightedMeanSampleFilter<TSample>

Types of the mean and the covariance calculator that will update this component's distribution parameters

Definition at line 77 of file itkGaussianMixtureModelComponent.h.

◆ MeanVectorType

template<typename TSample >
using itk::Statistics::GaussianMixtureModelComponent< TSample >::MeanVectorType = typename MeanEstimatorType::OutputType

Type of the mean vector

Definition at line 81 of file itkGaussianMixtureModelComponent.h.

◆ MeasurementVectorSizeType

template<typename TSample >
using itk::Statistics::GaussianMixtureModelComponent< TSample >::MeasurementVectorSizeType = typename Superclass::MeasurementVectorSizeType

Typedefs from the superclass

Definition at line 67 of file itkGaussianMixtureModelComponent.h.

◆ MeasurementVectorType

template<typename TSample >
using itk::Statistics::GaussianMixtureModelComponent< TSample >::MeasurementVectorType = typename Superclass::MeasurementVectorType

Typedefs from the superclass

Definition at line 66 of file itkGaussianMixtureModelComponent.h.

◆ MembershipFunctionType

template<typename TSample >
using itk::Statistics::GaussianMixtureModelComponent< TSample >::MembershipFunctionType = typename Superclass::MembershipFunctionType

Typedefs from the superclass

Definition at line 68 of file itkGaussianMixtureModelComponent.h.

◆ NativeMembershipFunctionType

Type of the membership function. Gaussian density function

Definition at line 73 of file itkGaussianMixtureModelComponent.h.

◆ ParametersType

template<typename TSample >
using itk::Statistics::GaussianMixtureModelComponent< TSample >::ParametersType = typename Superclass::ParametersType

Typedefs from the superclass

Definition at line 70 of file itkGaussianMixtureModelComponent.h.

◆ Pointer

template<typename TSample >
using itk::Statistics::GaussianMixtureModelComponent< TSample >::Pointer = SmartPointer<Self>

Definition at line 57 of file itkGaussianMixtureModelComponent.h.

◆ Self

Standard class type aliases.

Definition at line 55 of file itkGaussianMixtureModelComponent.h.

◆ Superclass

template<typename TSample >
using itk::Statistics::GaussianMixtureModelComponent< TSample >::Superclass = MixtureModelComponentBase<TSample>

Definition at line 56 of file itkGaussianMixtureModelComponent.h.

◆ WeightArrayType

template<typename TSample >
using itk::Statistics::GaussianMixtureModelComponent< TSample >::WeightArrayType = typename Superclass::WeightArrayType

Typedefs from the superclass

Definition at line 69 of file itkGaussianMixtureModelComponent.h.

Constructor & Destructor Documentation

◆ GaussianMixtureModelComponent()

template<typename TSample >
itk::Statistics::GaussianMixtureModelComponent< TSample >::GaussianMixtureModelComponent ( )
protected

Typedefs from the superclass

◆ ~GaussianMixtureModelComponent()

template<typename TSample >
itk::Statistics::GaussianMixtureModelComponent< TSample >::~GaussianMixtureModelComponent ( )
overrideprotecteddefault

Typedefs from the superclass

Member Function Documentation

◆ CalculateParametersChange()

template<typename TSample >
double itk::Statistics::GaussianMixtureModelComponent< TSample >::CalculateParametersChange ( )
protected

Returns the sum of squared changes in parameters between iterations

◆ CreateAnother()

template<typename TSample >
virtual::itk::LightObject::Pointer itk::Statistics::GaussianMixtureModelComponent< TSample >::CreateAnother ( ) const
virtual

Typedefs from the superclass

Reimplemented from itk::Object.

◆ GenerateData()

template<typename TSample >
void itk::Statistics::GaussianMixtureModelComponent< TSample >::GenerateData ( )
overrideprotectedvirtual

Computes the new distribution parameters

Implements itk::Statistics::MixtureModelComponentBase< TSample >.

◆ GetNameOfClass()

template<typename TSample >
virtual const char* itk::Statistics::GaussianMixtureModelComponent< TSample >::GetNameOfClass ( ) const
virtual

Standard Macros

Reimplemented from itk::Statistics::MixtureModelComponentBase< TSample >.

◆ New()

template<typename TSample >
static Pointer itk::Statistics::GaussianMixtureModelComponent< TSample >::New ( )
static

Typedefs from the superclass

◆ PrintSelf()

template<typename TSample >
void itk::Statistics::GaussianMixtureModelComponent< TSample >::PrintSelf ( std::ostream &  os,
Indent  indent 
) const
overrideprotectedvirtual

Typedefs from the superclass

Reimplemented from itk::Object.

◆ SetParameters()

template<typename TSample >
void itk::Statistics::GaussianMixtureModelComponent< TSample >::SetParameters ( const ParametersType parameters)
override

Sets the component's distribution parameters.

◆ SetSample()

template<typename TSample >
void itk::Statistics::GaussianMixtureModelComponent< TSample >::SetSample ( const TSample *  sample)
overridevirtual

Sets the input sample

Reimplemented from itk::Statistics::MixtureModelComponentBase< TSample >.

Member Data Documentation

◆ m_Covariance

template<typename TSample >
CovarianceEstimatorType::MatrixType itk::Statistics::GaussianMixtureModelComponent< TSample >::m_Covariance
private

Typedefs from the superclass

Definition at line 114 of file itkGaussianMixtureModelComponent.h.

◆ m_CovarianceEstimator

template<typename TSample >
CovarianceEstimatorType::Pointer itk::Statistics::GaussianMixtureModelComponent< TSample >::m_CovarianceEstimator
private

Typedefs from the superclass

Definition at line 118 of file itkGaussianMixtureModelComponent.h.

◆ m_GaussianMembershipFunction

template<typename TSample >
NativeMembershipFunctionType::Pointer itk::Statistics::GaussianMixtureModelComponent< TSample >::m_GaussianMembershipFunction
private

Typedefs from the superclass

Definition at line 110 of file itkGaussianMixtureModelComponent.h.

◆ m_Mean

template<typename TSample >
MeanEstimatorType::MeasurementVectorType itk::Statistics::GaussianMixtureModelComponent< TSample >::m_Mean
private

Typedefs from the superclass

Definition at line 112 of file itkGaussianMixtureModelComponent.h.

◆ m_MeanEstimator

template<typename TSample >
MeanEstimatorType::Pointer itk::Statistics::GaussianMixtureModelComponent< TSample >::m_MeanEstimator
private

Typedefs from the superclass

Definition at line 116 of file itkGaussianMixtureModelComponent.h.


The documentation for this class was generated from the following file: