ITK
5.2.0
Insight Toolkit
|
#include <itkKdTreeBasedKmeansEstimator.h>
Classes | |
struct | Candidate |
Public Member Functions | |
CandidateVector ()=default | |
int | Size () const |
virtual | ~CandidateVector ()=default |
std::vector< Candidate > | m_Candidates |
MeasurementVectorSizeType | m_MeasurementVectorSize { 0 } |
void | SetCentroids (InternalParametersType ¢roids) |
void | GetCentroids (InternalParametersType ¢roids) |
void | UpdateCentroids () |
Candidate & | operator[] (int index) |
Definition at line 178 of file itkKdTreeBasedKmeansEstimator.h.
|
default |
|
virtualdefault |
|
inline |
gets the centroids (k-means)
Definition at line 220 of file itkKdTreeBasedKmeansEstimator.h.
|
inline |
gets the index-th candidates
Definition at line 251 of file itkKdTreeBasedKmeansEstimator.h.
|
inline |
Initialize the centroids with the argument. At each iteration, this should be called before filtering.
Definition at line 202 of file itkKdTreeBasedKmeansEstimator.h.
References itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::CandidateVector::Candidate::Centroid, itk::NumericTraits< T >::GetLength(), itk::NumericTraits< T >::SetLength(), itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::CandidateVector::Candidate::Size, and itk::Statistics::KdTreeBasedKmeansEstimator< TKdTree >::CandidateVector::Candidate::WeightedCentroid.
|
inline |
returns the number of candidate = k
Definition at line 194 of file itkKdTreeBasedKmeansEstimator.h.
|
inline |
updates the centroids using the vector sum of measurement vectors that belongs to each centroid and the number of measurement vectors
Definition at line 234 of file itkKdTreeBasedKmeansEstimator.h.
|
private |
internal storage for the candidates
Definition at line 255 of file itkKdTreeBasedKmeansEstimator.h.
|
private |
Length of each measurement vector
Definition at line 258 of file itkKdTreeBasedKmeansEstimator.h.