[Insight-users] resampling and linear interpolation
Michael Kuhn
michakuhn at gmx . ch
Wed, 20 Aug 2003 13:01:32 -0600
Hi,
I'm doing 3D registration. Unfortunately, my data sizes are too big to
do a registration on the original data. Therefore I'm using a resample
image filter to downscale my images. I assign it a linear interpolate
image function and an affine transform. The idea of the affine transform
is to
1) transform the output spacing into unit spacing (along all axis)
2) resample the output image at a less dense grid than the grid of the
input image
This basically means, a scaling matrix has to be set for the affine
transform, and unit spacing has to be set as the output spacing for the
resample image filter.
The transform itself seems to work fine. However, when doing a
registration of the pre transformed (downscaled, unit spacing) images,
it turns out that the resulting (meansquares) metric value is always
lower for non integer downscale factors than for integer ones (see
sample below). I wonder if there is a mathematical or numerical cause
for this problem (I thought about the linear interpolation that does not
need to do any interpolation in the integer case).
Thanks,
Michael
Sample:
(1st column: downscale factor, 2nd column best meansquare metric value
achieved for a registration run)
3 671076
3.01 493154
3.02 507410
3.03 519153
3.04 526705
3.05 530006
3.06 519486
3.07 506158
3.08 525221
3.09 511372
3.1 507557
3.11 501830
3.12 503091
3.13 514344
3.14 508190
3.15 504942
3.16 502145
3.17 508199
3.18 508164
3.19 509470
3.2 512111
3.21 499700
3.22 491668
3.23 510329
3.24 498813
3.25 502576
3.26 490604
3.27 494706
3.28 511005
3.29 510030
3.3 494550
3.31 496548
3.32 482143
3.33 471736
3.34 488468
3.35 494607
3.36 487787
3.37 480632
3.38 479595
3.39 499615
3.4 497371
3.41 493534
3.42 485106
3.43 481086
3.44 480180
3.45 488807
3.46 482753
3.47 481374
3.48 473041
3.49 466220
3.5 497818
3.51 468225
3.52 479928
3.53 466164
3.54 472708
3.55 461543
3.56 469550
3.57 457421
3.58 473226
3.59 469654
3.6 467439
3.61 460392
3.62 458992
3.63 457589
3.64 473349
3.65 462462
3.66 457830
3.67 453209
3.68 452390
3.69 462715
3.7 450983
3.71 466169
3.72 468178
3.73 459741
3.74 467537
3.75 463755
3.76 453383
3.77 451812
3.78 459649
3.79 461948
3.8 461665
3.81 454432
3.82 450894
3.83 444630
3.84 447712
3.85 455920
3.86 466395
3.87 456363
3.88 449726
3.89 452826
3.9 454229
3.91 446022
3.92 434137
3.93 440316
3.94 453348
3.95 447570
3.96 448920
3.97 447767
3.98 412571
3.99 432648
4 596577