[Insight-users] Need Help --- Registration of Two Labelled Volumes !!!!
Luis Ibanez
luis.ibanez at kitware.com
Tue Mar 17 18:32:36 EDT 2009
Hi Deepak,
Just to answer your questions:
> QUESTION:
>
> Now Im confused as to which optimizer to use for my problem
>
> 1. AmoebaOptimizer ( that is appropriate for
> MatchCardinalityImageToImageMetric)
Yes, the AmoebaOptimizer does not require the Metric
to provide derivatives.
> 2. VersorTransformOptimizer (that is appropriate for
Similarity3DTransform)
>
> Also, does the VersorTransformOptimizer require analytical derivates of
> the metric (which the MatchCardinalityImageToImageMetric does not
provide).
Yes, the VersorTransformOptimizer and its derived class
the VersorRigid3DTransformOptimizer, both require the
Metric class to provide Derivatives.
Regards,
Luis
-------------------------------
Deepak Roy Chittajallu wrote:
> Hello,
>
> PROBLEM:
>
> I am trying to perform registration of two labelled volumes using ITK. I
> intend to get it to work with 3D medical images.
>
> STUDY:
>
> I went through the Image Registration Section of the ITK software guide
> and I came to know that the appropriate metric for my problem is the
> itk::MatchCardinalityImageToImageMetric. I also went through the
> corresponding example in itk ---
> "Examples\Registration\ImageRegistration10.cxx".
>
> I found that the MatchCardinalityImageToImageMetric does not provide
> analytical derivatives and simply counts the number of
> matches/mismatches. Hence the regular optimizers wouldnt work, and hence
> i tried to use the AmoebaOptimizer as shown in the example.
>
> However i want to perform registration in the following order:
> Similarity Transform, Affine, Deformable
>
> To start with, i am just trying it with the Similarity3DTransform.
>
> itk::Similarity3DTransform derives from the itk::VersorRigid3DTransform
> and i read in the ITK software guide that the most appropriate optimizer
> for this transform is itk::VersorTransformOptimizer as it computes the
> versor derivatives as defined by hamilton.
>
> QUESTION:
>
> Now Im confused as to which optimizer to use for my problem
>
> 1. AmoebaOptimizer ( that is appropriate for
> MatchCardinalityImageToImageMetric)
> 2. VersorTransformOptimizer (that is appropriate for Similarity3DTransform)
>
> Also, does the VersorTransformOptimizer require analytical derivates of
> the metric (which the MatchCardinalityImageToImageMetric does not provide).
>
> MY EXPERIMENTS:
>
> I tried to use the AmoebaOptimizer with the
> MatchCardinalityImageToImageMetric and Similarity3DTransform.
>
> I was not clear how to assign the Initial Simplex for my transform
> parameters particularly those of the quaternion. So i let the optimizer
> determine it automatically.
>
> However, the registration method fails with an exception.
>
> My Input test data (i created "simple" toy images to test my code):
>
> > Fixed Image: Stack of two 2D slices with a rectangle positioned at
> the center of the image
> > Moving Image: Stack of two 2D slices with an ellipse (of smaller size
> than a rectangle) position at the center of the image. The major axis of
> the ellipse is at 45 degrees about the image x-axis.
>
> I think it is failing when the optimizer is working with the scaling
> parameter ... I dont see a reason why it should do so ....
>
> Below is the command line output:
>
> ****************************************************************************************
>
> Iter 1 : 0.1122 --- [0, 0, 0, 0, 0, 0, 1]
> Iter 2 : 0.117374 --- [0.00025, 0, 0, 0, 0, 0, 1]
> Iter 3 : 0.114343 --- [0, 0.00025, 0, 0, 0, 0, 1]
> Iter 4 : 0.114466 --- [0, 0, 0.00025, 0, 0, 0, 1]
> Iter 5 : 0.113333 --- [0, 0, 0, 0.00025, 0, 0, 1]
> Iter 6 : 0.113333 --- [0, 0, 0, 0, 0.00025, 0, 1]
> Iter 7 : 0.1122 --- [0, 0, 0, 0, 0, 0.00025, 1]
> ERROR-REGISTRATION :
> itk::ExceptionObject (013FFA90)
> Location: "double __thiscall
> itk::MatchCardinalityImageToImageMetric<class itk::Image<unsigned
> char,3>,class itk::Image<unsigned char,3> >::GetNonconstValue(const
> class itk::Array<double> &)"
> File:
> c:\itk\insighttoolkit-3.10.2\code\algorithms\itkMatchCardinalityImageToImageMetric.txx
> Line: 130
> Description: itk::ERROR: MatchCardinalityImageToImageMetric(018DCEE0):
> All the points mapped to outside of the moving image
>
> ***************************************************************************************************
>
> At the end of this message is a section of the code that i wrote ...
>
> Any help would be greatly appreciated.
>
> Thanks in advance.
>
> Regards,
>
> Deepak
>
>
> ****************************** CODE ******************************
>
> // Perform registration with Similarity3DTransform first
> typedef itk::ImageRegistrationMethod<FixedImageType, MovingImageType>
> RegistrationType;
> RegistrationType::Pointer pRegistrationMethod =
> RegistrationType::New();
> // Metric
> typedef
> itk::MatchCardinalityImageToImageMetric<FixedImageType,MovingImageType>
> MetricType;
> MetricType::Pointer pMetric = MetricType::New();
> pMetric->MeasureMatchesOff();
> pRegistrationMethod->SetMetric( pMetric );
>
> // Interpolator
> typedef itk::NearestNeighborInterpolateImageFunction< MovingImageType,
> double> InterpolatorType;
> InterpolatorType::Pointer pInterpolator = InterpolatorType::New();
> pRegistrationMethod->SetInterpolator( pInterpolator );
>
> // transform
> typedef itk::Similarity3DTransform<double> SimilarityTransformType;
> typedef
> itk::CenteredTransformInitializer<SimilarityTransformType,FixedImageType,MovingImageType>
> TransformInitializerType;
>
> SimilarityTransformType::Pointer pTransform =
> SimilarityTransformType::New();
> TransformInitializerType::Pointer pTransformInitializer =
> TransformInitializerType::New();
>
> pTransformInitializer->SetFixedImage( pFixedImage );
> pTransformInitializer->SetMovingImage( pMovingImage );
> pTransformInitializer->SetTransform( pTransform );
> pTransformInitializer->MomentsOn();
> pTransformInitializer->InitializeTransform();
>
> // rotation
> typedef SimilarityTransformType::VersorType VersorType;
> typedef VersorType::VectorType VectorType;
> VectorType rot_axis;
> rot_axis[0] = 0.0;
> rot_axis[1] = 0.0;
> rot_axis[2] = 1.0;
> pTransform->SetRotation( rot_axis , 0.0 );
>
> // scaling
> pTransform->SetScale( 1.0 );
> pRegistrationMethod->SetInitialTransformParameters(
> pTransform->GetParameters() );
> pRegistrationMethod->SetTransform( pTransform );
> // Optimizer
> typedef itk::AmoebaOptimizer OptimizerType;
> OptimizerType::Pointer pOptimizer = OptimizerType::New();
> OptimizerType::ParametersType simplexDelta(
> pTransform->GetNumberOfParameters() );
> // simplexDelta.Fill( 5.0 );
> // pOptimizer->AutomaticInitialSimplexOff();
> // pOptimizer->SetInitialSimplexDelta( simplexDelta );
> pOptimizer->SetParametersConvergenceTolerance( 0.25 ); // quarter pixel
> pOptimizer->SetFunctionConvergenceTolerance( 0.001 ); // 0.1%
> pOptimizer->SetMaximumNumberOfIterations( 10 );
> pRegistrationMethod->SetOptimizer( pOptimizer );
>
> // Observer
> typedef CommandIterationUpdate ObserverType;
> ObserverType::Pointer pObserver = ObserverType::New();
> pOptimizer->AddObserver( itk::IterationEvent() , pObserver);
>
> pRegistrationMethod->SetFixedImage( pFixedImage );
> pRegistrationMethod->SetMovingImage( pMovingImage );
> pRegistrationMethod->SetFixedImageRegion(
> pFixedImage->GetLargestPossibleRegion() );
>
> try
> {
> pRegistrationMethod->Initialize();
> pRegistrationMethod->StartRegistration();
> }
> catch(itk::ExceptionObject & err)
> {
> std::cout << "\nERROR-REGISTRATION : " << err << std::endl;
> return EXIT_FAILURE;
> }
>
> RegistrationType::ParametersType finalParameters;
> finalParameters = pRegistrationMethod->GetLastTransformParameters();
>
> std::cout << "Final: " << pMetric->GetValue( finalParameters ) << " ---
> " << finalParameters << std::endl;
>
> // Resampling -- Transform the moving image using the obtained transform
> parameters
> typedef itk::ResampleImageFilter<MovingImageType,FixedImageType>
> ResampleFilterType;
> ResampleFilterType::Pointer pResampleImageFilter =
> ResampleFilterType::New();
> // transform
> SimilarityTransformType::Pointer pFinalTransform =
> SimilarityTransformType::New();
> pFinalTransform->SetParameters(
> pRegistrationMethod->GetLastTransformParameters() );
> pResampleImageFilter->SetTransform( pFinalTransform );
> pResampleImageFilter->SetInput( pMovingImage );
> pResampleImageFilter->SetSize(
> pFixedImage->GetLargestPossibleRegion().GetSize() );
> pResampleImageFilter->SetOutputOrigin( pFixedImage->GetOrigin() );
> pResampleImageFilter->SetOutputSpacing( pFixedImage->GetSpacing() );
> pResampleImageFilter->SetOutputDirection( pFixedImage->GetDirection() );
> pResampleImageFilter->SetDefaultPixelValue( 0 );
> pResampleImageFilter->SetInterpolator( pInterpolator );
> pResampleImageFilter->Update();
>
> ************************************************************************************************
>
>
> ------------------------------------------------------------------------
>
> _____________________________________
> Powered by www.kitware.com
>
> Visit other Kitware open-source projects at
> http://www.kitware.com/opensource/opensource.html
>
> Please keep messages on-topic and check the ITK FAQ at: http://www.itk.org/Wiki/ITK_FAQ
>
> Follow this link to subscribe/unsubscribe:
> http://www.itk.org/mailman/listinfo/insight-users
More information about the Insight-users
mailing list