[Insight-users] Much more computation with Itk v4 as compared to v3 ?
lien lee
lienlee at gmail.com
Thu Oct 25 17:20:37 EDT 2012
Hi all,
As a starting point with v4, a simple rigid transform image registration
(as attached at the bottom of this message) was created and tested on a
pair of 256x256x187 and 256x256x229 images. It takes about 90s.
I had an same registration based on v3, and tested against the same data,
but it just took about 12s on the same machine with almost the same
matching result.
As a newbie, I am not sure whether I did the right thing and I am trying to
understand more about v4. By debugging into the v4 code, I noticed that:
1. the new virtual domain (same as the fixed image in my case) introduces
one more layer which needs some extra computation.
2. the transformation on a point was done through two Transformxxx()
operations by two transform instances in
ImageToImageMetricv4::m_CompositeTransform, although one of which is
actually an identity transform.
and, I am guessing maybe they are reasons for more computing time, but, I
am not so sure.
Of course, I can just stick to v3, but, I am just curious whether there are
some ways that I can avoid those extra computations with v4.
//=== Start of the code ===================================
//
bool
RigidTransform(itk::CompositeTransform<double,3>::Pointer vComposite,
ImageType const& vFixImage, ImageType const& vMovImage)
{
//- The Euler transform is a rotation and translation about a center,
so we
// need to find the rotation center.
//
typedef itk::Euler3DTransform<double> RigidTransformType;
RigidTransformType::Pointer vRigid = RigidTransformType::New();
typedef itk::CenteredTransformInitializer< RigidTransformType,
ImageType,
ImageType >
InitializerType;
InitializerType::Pointer Initializer = InitializerType::New();
Initializer->SetTransform(vRigid);
Initializer->SetFixedImage(&vFixImage);
Initializer->SetMovingImage(&vMovImage);
Initializer->GeometryOn();
Initializer->InitializeTransform();
vComposite->AddTransform(vRigid);
//- Metric
//
typedef itk::MattesMutualInformationImageToImageMetricv4<ImageType,
ImageType> MetricType;
MetricType::Pointer vMetric = MetricType::New();
vMetric->SetNumberOfHistogramBins(32);
vMetric->SetUseFixedImageGradientFilter(false);
//- Optimizer
//
typedef itk::GradientDescentOptimizerv4 OptimizerType;
OptimizerType::Pointer vOptimizer = OptimizerType::New();
vOptimizer->SetNumberOfIterations( 50 );
vOptimizer->SetDoEstimateLearningRateOnce( true );
vOptimizer->SetMinimumConvergenceValue( 1e-6 );
vOptimizer->SetConvergenceWindowSize( 5 );
vOptimizer->SetMaximumStepSizeInPhysicalUnits( 0.5 );
//- Scale estimator
//
itk::OptimizerParameterScalesEstimator::Pointer vScalesEstimator;
typedef itk::RegistrationParameterScalesFromJacobian<MetricType>
JacobianScalesEstimatorType;
{
JacobianScalesEstimatorType::Pointer vJacobianScalesEstimator
= JacobianScalesEstimatorType::New();
vJacobianScalesEstimator->SetMetric(vMetric);
vJacobianScalesEstimator->SetTransformForward(true);
vScalesEstimator = vJacobianScalesEstimator;
}
vOptimizer->SetScalesEstimator(vScalesEstimator);
vOptimizer->SetDoEstimateScales(true);
//- The RegistrationMethod class coordinates the registration operation.
// It needs all the pieces that come together to perform the
registration
// operation.
//
typedef itk::ImageRegistrationMethodv4<ImageType, ImageType,
itk::Euler3DTransform<double>> RigidRegistrationType;
RigidRegistrationType::Pointer vRigidRegistration =
RigidRegistrationType::New();
vRigidRegistration->SetOptimizer(vOptimizer);
vRigidRegistration->SetFixedImage(&vFixImage);
vRigidRegistration->SetMovingImage(&vMovImage);
vRigidRegistration->SetMovingInitialTransform(vRigid);
vRigidRegistration->SetNumberOfLevels(3);
vRigidRegistration->SetMetric(vMetric);
vRigidRegistration->SetMetricSamplingStrategy(RigidRegistrationType::RANDOM);
vRigidRegistration->SetMetricSamplingPercentage(0.1);
//- Shrink the virtual domain by specified factors for each level.
//
RigidRegistrationType::ShrinkFactorsArrayType vRigidShrinkFactors;
vRigidShrinkFactors.SetSize( 3 );
vRigidShrinkFactors[0] = 4;
vRigidShrinkFactors[1] = 2;
vRigidShrinkFactors[2] = 1;
vRigidRegistration->SetShrinkFactorsPerLevel( vRigidShrinkFactors );
//- Smoothing sigmas array
//
RigidRegistrationType::SmoothingSigmasArrayType vRigidSmoothingSigmas;
vRigidSmoothingSigmas.SetSize(3);
vRigidSmoothingSigmas.Fill(0);
vRigidRegistration->SetSmoothingSigmasPerLevel(vRigidSmoothingSigmas);
//- Observer
//
typedef CommandIterationUpdate< RigidRegistrationType > CommandType;
CommandType::Pointer observer = CommandType::New();
vRigidRegistration->AddObserver( itk::InitializeEvent(), observer );
try
{
std::cout << "Starting rigid registration..." << std::endl;
vRigidRegistration->Update();
std::cout << "Rigid parameters after registration: " << std::endl
<< vOptimizer->GetCurrentPosition() << std::endl;
}
catch( itk::ExceptionObject &e )
{
std::cerr << "Exception caught: " << e << std::endl;
return false;
}
vComposite->AddTransform(const_cast<RigidTransformType*>(vRigidRegistration->GetOutput()->Get()));
return true;
}
//
//=== End of the code =====================================
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://www.itk.org/pipermail/insight-users/attachments/20121025/a7ce5f69/attachment.htm>
More information about the Insight-users
mailing list