ITK  6.0.0
Insight Toolkit
SphinxExamples/src/Core/Transform/GlobalRegistrationTwoImagesBSpline/Code.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifdef ENABLE_QUICKVIEW
# include "QuickView.h"
#endif
constexpr unsigned int ImageDimension = 2;
using PixelType = float;
static void
CreateEllipseImage(const ImageType::Pointer & image);
static void
CreateCircleImage(const ImageType::Pointer & image);
int
main(int itkNotUsed(argc), char * itkNotUsed(argv)[])
{
const unsigned int SpaceDimension = ImageDimension;
constexpr unsigned int SplineOrder = 3;
using CoordinateRepType = double;
using OptimizerType = itk::LBFGSOptimizer;
auto metric = MetricType::New();
auto optimizer = OptimizerType::New();
auto interpolator = InterpolatorType::New();
auto registration = RegistrationType::New();
// The old registration framework has problems with multi-threading
// For now, we set the number of work units to 1
registration->SetNumberOfWorkUnits(1);
registration->SetMetric(metric);
registration->SetOptimizer(optimizer);
registration->SetInterpolator(interpolator);
auto transform = TransformType::New();
registration->SetTransform(transform);
// Create the synthetic images
auto fixedImage = ImageType::New();
CreateCircleImage(fixedImage);
auto movingImage = ImageType::New();
CreateEllipseImage(movingImage);
// Setup the registration
registration->SetFixedImage(fixedImage);
registration->SetMovingImage(movingImage);
ImageType::RegionType fixedRegion = fixedImage->GetBufferedRegion();
registration->SetFixedImageRegion(fixedRegion);
// Here we define the parameters of the BSplineDeformableTransform grid. We
// arbitrarily decide to use a grid with $5 \times 5$ nodes within the image.
// The reader should note that the BSpline computation requires a
// finite support region ( 1 grid node at the lower borders and 2
// grid nodes at upper borders). Therefore in this example, we set
// the grid size to be $8 \times 8$ and place the grid origin such that
// grid node (1,1) coincides with the first pixel in the fixed image.
TransformType::PhysicalDimensionsType fixedPhysicalDimensions;
TransformType::MeshSizeType meshSize;
for (unsigned int i = 0; i < ImageDimension; ++i)
{
fixedPhysicalDimensions[i] =
fixedImage->GetSpacing()[i] * static_cast<double>(fixedImage->GetLargestPossibleRegion().GetSize()[i] - 1);
}
unsigned int numberOfGridNodesInOneDimension = 5;
meshSize.Fill(numberOfGridNodesInOneDimension - SplineOrder);
transform->SetTransformDomainOrigin(fixedImage->GetOrigin());
transform->SetTransformDomainPhysicalDimensions(fixedPhysicalDimensions);
transform->SetTransformDomainMeshSize(meshSize);
transform->SetTransformDomainDirection(fixedImage->GetDirection());
using ParametersType = TransformType::ParametersType;
const unsigned int numberOfParameters = transform->GetNumberOfParameters();
ParametersType parameters(numberOfParameters);
parameters.Fill(0.0);
transform->SetParameters(parameters);
// We now pass the parameters of the current transform as the initial
// parameters to be used when the registration process starts.
registration->SetInitialTransformParameters(transform->GetParameters());
std::cout << "Intial Parameters = " << std::endl;
std::cout << transform->GetParameters() << std::endl;
// Next we set the parameters of the LBFGS Optimizer.
optimizer->SetGradientConvergenceTolerance(0.05);
optimizer->SetLineSearchAccuracy(0.9);
optimizer->SetDefaultStepLength(.5);
optimizer->TraceOn();
optimizer->SetMaximumNumberOfFunctionEvaluations(1000);
std::cout << std::endl << "Starting Registration" << std::endl;
try
{
registration->Update();
std::cout << "Optimizer stop condition = " << registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch (const itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
OptimizerType::ParametersType finalParameters = registration->GetLastTransformParameters();
std::cout << "Last Transform Parameters" << std::endl;
std::cout << finalParameters << std::endl;
transform->SetParameters(finalParameters);
auto resample = ResampleFilterType::New();
resample->SetTransform(transform);
resample->SetInput(movingImage);
resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize());
resample->SetOutputOrigin(fixedImage->GetOrigin());
resample->SetOutputSpacing(fixedImage->GetSpacing());
resample->SetOutputDirection(fixedImage->GetDirection());
resample->SetDefaultPixelValue(100);
using OutputPixelType = unsigned char;
auto caster = CastFilterType::New();
caster->SetInput(resample->GetOutput());
try
{
itk::WriteImage(caster->GetOutput(), "output.png");
}
catch (const itk::ExceptionObject & err)
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
#ifdef ENABLE_QUICKVIEW
QuickView viewer;
viewer.AddImage(fixedImage.GetPointer(), true, "Fixed Image");
viewer.AddImage(movingImage.GetPointer(), true, "Moving Image");
viewer.AddImage(resample->GetOutput(), true, "Resampled Moving Image");
viewer.Visualize();
#endif
return EXIT_SUCCESS;
}
void
CreateEllipseImage(const ImageType::Pointer & image)
{
using SpatialObjectToImageFilterType = itk::SpatialObjectToImageFilter<EllipseType, ImageType>;
size[0] = 100;
size[1] = 100;
imageFilter->SetSize(size);
ImageType::SpacingType spacing;
spacing.Fill(1);
imageFilter->SetSpacing(spacing);
auto ellipse = EllipseType::New();
EllipseType::ArrayType radiusArray;
radiusArray[0] = 10;
radiusArray[1] = 20;
ellipse->SetRadiusInObjectSpace(radiusArray);
using TransformType = EllipseType::TransformType;
auto transform = TransformType::New();
transform->SetIdentity();
TransformType::OutputVectorType translation;
translation[0] = 65;
translation[1] = 45;
transform->Translate(translation, false);
ellipse->SetObjectToParentTransform(transform);
imageFilter->SetInput(ellipse);
ellipse->SetDefaultInsideValue(255);
ellipse->SetDefaultOutsideValue(0);
imageFilter->SetUseObjectValue(true);
imageFilter->SetOutsideValue(0);
imageFilter->Update();
image->Graft(imageFilter->GetOutput());
}
void
CreateCircleImage(const ImageType::Pointer & image)
{
using SpatialObjectToImageFilterType = itk::SpatialObjectToImageFilter<EllipseType, ImageType>;
size[0] = 100;
size[1] = 100;
imageFilter->SetSize(size);
ImageType::SpacingType spacing;
spacing.Fill(1);
imageFilter->SetSpacing(spacing);
auto ellipse = EllipseType::New();
EllipseType::ArrayType radiusArray;
radiusArray[0] = 10;
radiusArray[1] = 10;
ellipse->SetRadiusInObjectSpace(radiusArray);
using TransformType = EllipseType::TransformType;
auto transform = TransformType::New();
transform->SetIdentity();
TransformType::OutputVectorType translation;
translation[0] = 50;
translation[1] = 50;
transform->Translate(translation, false);
ellipse->SetObjectToParentTransform(transform);
imageFilter->SetInput(ellipse);
ellipse->SetDefaultInsideValue(255);
ellipse->SetDefaultOutsideValue(0);
imageFilter->SetUseObjectValue(true);
imageFilter->SetOutsideValue(0);
imageFilter->Update();
image->Graft(imageFilter->GetOutput());
}
Pointer
SmartPointer< Self > Pointer
Definition: itkAddImageFilter.h:93
itk::CastImageFilter
Casts input pixels to output pixel type.
Definition: itkCastImageFilter.h:100
itkTimeProbesCollectorBase.h
itkEllipseSpatialObject.h
itkLBFGSOptimizer.h
itk::GTest::TypedefsAndConstructors::Dimension2::SizeType
ImageBaseType::SizeType SizeType
Definition: itkGTestTypedefsAndConstructors.h:49
itk::ImageRegistrationMethod
Base class for Image Registration Methods.
Definition: itkImageRegistrationMethod.h:70
itk::SpatialObjectToImageFilter
Base class for filters that take a SpatialObject as input and produce an image as output....
Definition: itkSpatialObjectToImageFilter.h:41
itkCastImageFilter.h
itk::EllipseSpatialObject
Definition: itkEllipseSpatialObject.h:38
itkMeanSquaresImageToImageMetric.h
itk::LinearInterpolateImageFunction
Linearly interpolate an image at specified positions.
Definition: itkLinearInterpolateImageFunction.h:51
QuickView.h
itk::BSplineTransform
Deformable transform using a BSpline representation.
Definition: itkBSplineTransform.h:103
QuickView::AddImage
void AddImage(TImage *, bool FlipVertical=true, std::string Description="")
itkBSplineTransform.h
itkSpatialObjectToImageFilter.h
itk::GTest::TypedefsAndConstructors::Dimension2::RegionType
ImageBaseType::RegionType RegionType
Definition: itkGTestTypedefsAndConstructors.h:54
itkImageRegistrationMethod.h
itk::MeanSquaresImageToImageMetric
TODO.
Definition: itkMeanSquaresImageToImageMetric.h:41
itkImageFileWriter.h
itk::ExceptionObject
Standard exception handling object.
Definition: itkExceptionObject.h:50
itk::Size::SetSize
void SetSize(const SizeValueType val[VDimension])
Definition: itkSize.h:180
itk::LBFGSOptimizer
Wrap of the vnl_lbfgs algorithm for use in ITKv4 registration framework. The vnl_lbfgs is a wrapper f...
Definition: itkLBFGSOptimizer.h:86
QuickView
A convenient class to render itk images with vtk.
Definition: QuickView.h:111
itk::ResampleImageFilter
Resample an image via a coordinate transform.
Definition: itkResampleImageFilter.h:90
itk::Image
Templated n-dimensional image class.
Definition: itkImage.h:88
New
static Pointer New()
itkResampleImageFilter.h
QuickView::Visualize
void Visualize(bool interact=true)
itk::WriteImage
ITK_TEMPLATE_EXPORT void WriteImage(TImagePointer &&image, const std::string &filename, bool compress=false)
Definition: itkImageFileWriter.h:256