ITK
6.0.0
Insight Toolkit
SphinxExamples/src/Registration/Common/PerformMultiModalityRegistrationWithMutualInformation/Code.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// The following simple example illustrates how multiple imaging modalities can
// be registered using the ITK registration framework. The first difference
// between this and previous examples is the use of the
// MutualInformationImageToImageMetric as the cost-function to be
// optimized. The second difference is the use of the
// GradientDescentOptimizer. Due to the stochastic nature of the
// metric computation, the values are too noisy to work successfully with the
// RegularStepGradientDescentOptimizer. Therefore, we will use the
// simpler GradientDescentOptimizer with a user defined learning rate. The
// following headers declare the basic components of this registration method.
#include "
itkImageRegistrationMethod.h
"
#include "
itkTranslationTransform.h
"
#include "
itkMutualInformationImageToImageMetric.h
"
#include "
itkGradientDescentOptimizer.h
"
// One way to simplify the computation of the mutual information is
// to normalize the statistical distribution of the two input images. The
// NormalizeImageFilter is the perfect tool for this task.
// It rescales the intensities of the input images in order to produce an
// output image with zero mean and unit variance.
#include "
itkNormalizeImageFilter.h
"
// Additionally, low-pass filtering of the images to be registered will also
// increase robustness against noise. In this example, we will use the
// DiscreteGaussianImageFilter for that purpose.
#include "
itkDiscreteGaussianImageFilter.h
"
#include "
itkImageFileReader.h
"
#include "
itkImageFileWriter.h
"
#include "
itkResampleImageFilter.h
"
#include "
itkCastImageFilter.h
"
#include "
itkCheckerBoardImageFilter.h
"
// The following section of code implements a Command observer
// that will monitor the evolution of the registration process.
//
#include "
itkCommand.h
"
class
CommandIterationUpdate :
public
itk::Command
{
public
:
using
Self
= CommandIterationUpdate;
using
Superclass
=
itk::Command
;
using
Pointer
=
itk::SmartPointer<Self>
;
itkNewMacro(
Self
);
protected
:
CommandIterationUpdate() =
default
;
public
:
using
OptimizerType =
itk::GradientDescentOptimizer
;
using
OptimizerPointer =
const
OptimizerType *;
void
Execute
(
itk::Object
* caller,
const
itk::EventObject
& event)
override
{
Execute
((
const
itk::Object
*)caller, event);
}
void
Execute
(
const
itk::Object
*
object
,
const
itk::EventObject
& event)
override
{
auto
optimizer = dynamic_cast<OptimizerPointer>(
object
);
if
(!itk::IterationEvent().CheckEvent(&event))
{
return
;
}
std::cout << optimizer->GetCurrentIteration() <<
" "
;
std::cout << optimizer->GetValue() <<
" "
;
std::cout << optimizer->GetCurrentPosition() << std::endl;
}
};
int
main(
int
argc,
char
* argv[])
{
if
(argc < 4)
{
std::cerr <<
"Missing Parameters "
<< std::endl;
std::cerr <<
"Usage: "
<< argv[0];
std::cerr <<
" fixedImageFile"
;
std::cerr <<
" movingImageFile"
;
std::cerr <<
" outputImageFile "
;
std::cerr <<
" [checkerBoardBefore]"
;
std::cerr <<
" [checkerBoardAfter]"
<< std::endl;
return
EXIT_FAILURE;
}
const
char
* fixedImageFile = argv[1];
const
char
* movingImageFile = argv[2];
const
char
* outputImageFile = argv[3];
const
char
* checkerBoardBefore = argv[4];
const
char
* checkerBoardAfter = argv[5];
constexpr
unsigned
int
Dimension
= 2;
using
PixelType =
unsigned
short;
using
FixedImageType =
itk::Image<PixelType, Dimension>
;
using
MovingImageType =
itk::Image<PixelType, Dimension>
;
// It is convenient to work with an internal image type because mutual
// information will perform better on images with a normalized statistical
// distribution. The fixed and moving images will be normalized and
// converted to this internal type.
using
InternalPixelType = float;
using
InternalImageType =
itk::Image<InternalPixelType, Dimension>
;
using
TransformType =
itk::TranslationTransform<double, Dimension>
;
using
OptimizerType =
itk::GradientDescentOptimizer
;
using
InterpolatorType =
itk::LinearInterpolateImageFunction<InternalImageType, double>
;
using
RegistrationType =
itk::ImageRegistrationMethod<InternalImageType, InternalImageType>
;
using
MetricType =
itk::MutualInformationImageToImageMetric<InternalImageType, InternalImageType>
;
auto
transform =
TransformType::New
();
auto
optimizer =
OptimizerType::New
();
auto
interpolator =
InterpolatorType::New
();
auto
registration =
RegistrationType::New
();
auto
metric =
MetricType::New
();
registration->SetOptimizer(optimizer);
registration->SetTransform(transform);
registration->SetInterpolator(interpolator);
registration->SetMetric(metric);
// The metric requires a number of parameters to be selected, including
// the standard deviation of the Gaussian kernel for the fixed image
// density estimate, the standard deviation of the kernel for the moving
// image density and the number of samples use to compute the densities
// and entropy values. Experience has
// shown that a kernel standard deviation of 0.4 works well for images
// which have been normalized to a mean of zero and unit variance. We
// will follow this empirical rule in this example.
metric->SetFixedImageStandardDeviation(0.4);
metric->SetMovingImageStandardDeviation(0.4);
const
auto
fixedImage = itk::ReadImage<FixedImageType>(fixedImageFile);
const
auto
movingImage = itk::ReadImage<MovingImageType>(movingImageFile);
using
FixedNormalizeFilterType =
itk::NormalizeImageFilter<FixedImageType, InternalImageType>
;
using
MovingNormalizeFilterType =
itk::NormalizeImageFilter<MovingImageType, InternalImageType>
;
auto
fixedNormalizer =
FixedNormalizeFilterType::New
();
auto
movingNormalizer =
MovingNormalizeFilterType::New
();
using
GaussianFilterType =
itk::DiscreteGaussianImageFilter<InternalImageType, InternalImageType>
;
auto
fixedSmoother =
GaussianFilterType::New
();
auto
movingSmoother =
GaussianFilterType::New
();
fixedSmoother->SetVariance(2.0);
movingSmoother->SetVariance(2.0);
fixedNormalizer->SetInput(fixedImage);
movingNormalizer->SetInput(movingImage);
fixedSmoother->SetInput(fixedNormalizer->GetOutput());
movingSmoother->SetInput(movingNormalizer->GetOutput());
registration->SetFixedImage(fixedSmoother->GetOutput());
registration->SetMovingImage(movingSmoother->GetOutput());
fixedNormalizer->Update();
FixedImageType::RegionType
fixedImageRegion = fixedNormalizer->GetOutput()->GetBufferedRegion();
registration->SetFixedImageRegion(fixedImageRegion);
using
ParametersType = RegistrationType::ParametersType;
ParametersType initialParameters(transform->GetNumberOfParameters());
initialParameters[0] = 0.0;
// Initial offset in mm along X
initialParameters[1] = 0.0;
// Initial offset in mm along Y
registration->SetInitialTransformParameters(initialParameters);
// We should now define the number of spatial samples to be considered in
// the metric computation. Note that we were forced to postpone this setting
// until we had done the preprocessing of the images because the number of
// samples is usually defined as a fraction of the total number of pixels in
// the fixed image.
//
// The number of spatial samples can usually be as low as $1\%$ of the total
// number of pixels in the fixed image. Increasing the number of samples
// improves the smoothness of the metric from one iteration to another and
// therefore helps when this metric is used in conjunction with optimizers
// that rely of the continuity of the metric values. The trade-off, of
// course, is that a larger number of samples result in longer computation
// times per every evaluation of the metric.
//
// It has been demonstrated empirically that the number of samples is not a
// critical parameter for the registration process. When you start fine
// tuning your own registration process, you should start using high values
// of number of samples, for example in the range of 20% to 50% of the
// number of pixels in the fixed image. Once you have succeeded to register
// your images you can then reduce the number of samples progressively until
// you find a good compromise on the time it takes to compute one evaluation
// of the Metric. Note that it is not useful to have very fast evaluations
// of the Metric if the noise in their values results in more iterations
// being required by the optimizer to converge.
// behavior of the metric values as the iterations progress.
const
unsigned
int
numberOfPixels = fixedImageRegion.
GetNumberOfPixels
();
const
auto
numberOfSamples = static_cast<unsigned int>(numberOfPixels * 0.01);
metric->SetNumberOfSpatialSamples(numberOfSamples);
// For consistent results when regression testing.
metric->ReinitializeSeed(121212);
// Since larger values of mutual information indicate better matches than
// smaller values, we need to maximize the cost function in this example.
// By default the GradientDescentOptimizer class is set to minimize the
// value of the cost-function. It is therefore necessary to modify its
// default behavior by invoking the MaximizeOn() method.
// Additionally, we need to define the optimizer's step size using the
// SetLearningRate() method.
optimizer->SetNumberOfIterations(200);
optimizer->MaximizeOn();
// Note that large values of the learning rate will make the optimizer
// unstable. Small values, on the other hand, may result in the optimizer
// needing too many iterations in order to walk to the extrema of the cost
// function. The easy way of fine tuning this parameter is to start with
// small values, probably in the range of {5.0, 10.0}. Once the other
// registration parameters have been tuned for producing convergence, you
// may want to revisit the learning rate and start increasing its value until
// you observe that the optimization becomes unstable. The ideal value for
// this parameter is the one that results in a minimum number of iterations
// while still keeping a stable path on the parametric space of the
// optimization. Keep in mind that this parameter is a multiplicative factor
// applied on the gradient of the Metric. Therefore, its effect on the
// optimizer step length is proportional to the Metric values themselves.
// Metrics with large values will require you to use smaller values for the
// learning rate in order to maintain a similar optimizer behavior.
optimizer->SetLearningRate(15.0);
auto
observer =
CommandIterationUpdate::New
();
optimizer->AddObserver(itk::IterationEvent(), observer);
try
{
registration->Update();
std::cout <<
"Optimizer stop condition: "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch
(
const
itk::ExceptionObject & err)
{
std::cout <<
"ExceptionObject caught !"
<< std::endl;
std::cout << err << std::endl;
return
EXIT_FAILURE;
}
ParametersType finalParameters = registration->GetLastTransformParameters();
double
TranslationAlongX = finalParameters[0];
double
TranslationAlongY = finalParameters[1];
unsigned
int
numberOfIterations = optimizer->GetCurrentIteration();
double
bestValue = optimizer->GetValue();
// Print out results
std::cout << std::endl;
std::cout <<
"Result = "
<< std::endl;
std::cout <<
" Translation X = "
<< TranslationAlongX << std::endl;
std::cout <<
" Translation Y = "
<< TranslationAlongY << std::endl;
std::cout <<
" Iterations = "
<< numberOfIterations << std::endl;
std::cout <<
" Metric value = "
<< bestValue << std::endl;
std::cout <<
" Numb. Samples = "
<< numberOfSamples << std::endl;
using
ResampleFilterType =
itk::ResampleImageFilter<MovingImageType, FixedImageType>
;
auto
finalTransform =
TransformType::New
();
finalTransform->SetParameters(finalParameters);
finalTransform->SetFixedParameters(transform->GetFixedParameters());
auto
resample =
ResampleFilterType::New
();
resample->SetTransform(finalTransform);
resample->SetInput(movingImage);
resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize());
resample->SetOutputOrigin(fixedImage->GetOrigin());
resample->SetOutputSpacing(fixedImage->GetSpacing());
resample->SetOutputDirection(fixedImage->GetDirection());
resample->SetDefaultPixelValue(100);
using
OutputPixelType =
unsigned
char;
using
OutputImageType =
itk::Image<OutputPixelType, Dimension>
;
using
CastFilterType =
itk::CastImageFilter<FixedImageType, OutputImageType>
;
auto
caster =
CastFilterType::New
();
caster->SetInput(resample->GetOutput());
itk::WriteImage
(caster->GetOutput(), outputImageFile);
// Generate checkerboards before and after registration
using
CheckerBoardFilterType =
itk::CheckerBoardImageFilter<FixedImageType>
;
auto
checker =
CheckerBoardFilterType::New
();
checker->SetInput1(fixedImage);
checker->SetInput2(resample->GetOutput());
caster->SetInput(checker->GetOutput());
// Before registration
auto
identityTransform =
TransformType::New
();
identityTransform->SetIdentity();
resample->SetTransform(identityTransform);
if
(argc > 4)
{
itk::WriteImage
(caster->GetOutput(), checkerBoardBefore);
}
// After registration
resample->SetTransform(finalTransform);
if
(argc > 5)
{
itk::WriteImage
(caster->GetOutput(), checkerBoardAfter);
}
return
EXIT_SUCCESS;
}
Pointer
SmartPointer< Self > Pointer
Definition:
itkAddImageFilter.h:93
itk::DiscreteGaussianImageFilter
Blurs an image by separable convolution with discrete gaussian kernels. This filter performs Gaussian...
Definition:
itkDiscreteGaussianImageFilter.h:64
itk::CastImageFilter
Casts input pixels to output pixel type.
Definition:
itkCastImageFilter.h:100
itkImageFileReader.h
itk::CheckerBoardImageFilter
Combines two images in a checkerboard pattern.
Definition:
itkCheckerBoardImageFilter.h:46
itk::ImageRegistrationMethod
Base class for Image Registration Methods.
Definition:
itkImageRegistrationMethod.h:70
itk::SmartPointer< Self >
itkCastImageFilter.h
itkTranslationTransform.h
itkNormalizeImageFilter.h
itk::MutualInformationImageToImageMetric
Computes the mutual information between two images to be registered.
Definition:
itkMutualInformationImageToImageMetric.h:94
itkMutualInformationImageToImageMetric.h
itk::LinearInterpolateImageFunction
Linearly interpolate an image at specified positions.
Definition:
itkLinearInterpolateImageFunction.h:51
itk::Command
Superclass for callback/observer methods.
Definition:
itkCommand.h:45
itk::GradientDescentOptimizer
Implement a gradient descent optimizer.
Definition:
itkGradientDescentOptimizer.h:72
itkCheckerBoardImageFilter.h
itk::NormalizeImageFilter
Normalize an image by setting its mean to zero and variance to one.
Definition:
itkNormalizeImageFilter.h:54
itk::Command
class ITK_FORWARD_EXPORT Command
Definition:
itkObject.h:42
itk::GTest::TypedefsAndConstructors::Dimension2::RegionType
ImageBaseType::RegionType RegionType
Definition:
itkGTestTypedefsAndConstructors.h:54
itk::TranslationTransform
Translation transformation of a vector space (e.g. space coordinates)
Definition:
itkTranslationTransform.h:43
itkImageRegistrationMethod.h
itk::Command::Execute
virtual void Execute(Object *caller, const EventObject &event)=0
itkImageFileWriter.h
itk::ResampleImageFilter
Resample an image via a coordinate transform.
Definition:
itkResampleImageFilter.h:90
itk::Object
Base class for most ITK classes.
Definition:
itkObject.h:61
itkGradientDescentOptimizer.h
itk::Image
Templated n-dimensional image class.
Definition:
itkImage.h:88
itk::EventObject
Abstraction of the Events used to communicating among filters and with GUIs.
Definition:
itkEventObject.h:58
New
static Pointer New()
AddImageFilter
Definition:
itkAddImageFilter.h:81
itk::ImageRegion::GetNumberOfPixels
SizeValueType GetNumberOfPixels() const
itkResampleImageFilter.h
itk::GTest::TypedefsAndConstructors::Dimension2::Dimension
constexpr unsigned int Dimension
Definition:
itkGTestTypedefsAndConstructors.h:44
itkCommand.h
itkDiscreteGaussianImageFilter.h
Superclass
BinaryGeneratorImageFilter< TInputImage1, TInputImage2, TOutputImage > Superclass
Definition:
itkAddImageFilter.h:90
itk::WriteImage
ITK_TEMPLATE_EXPORT void WriteImage(TImagePointer &&image, const std::string &filename, bool compress=false)
Definition:
itkImageFileWriter.h:256
Generated on
unknown
for ITK by
1.8.16