ITK  6.0.0
Insight Toolkit
SphinxExamples/src/Registration/Common/WatchRegistration/Code.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "vtkVersion.h"
#include "vtkSmartPointer.h"
#include "vtkRenderWindow.h"
#include "vtkRenderer.h"
#include "vtkInteractorStyleImage.h"
#include "vtkRenderWindowInteractor.h"
#include "vtkImageActor.h"
#include "vtkImageMapper3D.h"
constexpr unsigned int Dimension = 2;
using PixelType = unsigned char;
using InputImageType = itk::Image<PixelType, Dimension>;
using OutputImageType = itk::Image<unsigned char, Dimension>;
// Command observer to visualize the evolution of the registration process.
//
#include "itkCommand.h"
template <typename TImage>
class IterationUpdate : public itk::Command
{
public:
using Self = IterationUpdate;
itkNewMacro(Self);
protected:
IterationUpdate() = default;
public:
using InternalImageType = itk::Image<float, 2>;
using OptimizerPointer = const OptimizerType *;
using ResampleFilterType = itk::ResampleImageFilter<TImage, TImage>;
using TransformType = itk::AffineTransform<double, 2>;
using ConnectorType = itk::ImageToVTKImageFilter<TImage>;
using FilterType = itk::FlipImageFilter<TImage>;
void
Execute(itk::Object * caller, const itk::EventObject & event) override
{
Execute((const itk::Object *)caller, event);
}
void
Execute(const itk::Object * object, const itk::EventObject & event) override
{
auto optimizer = static_cast<OptimizerPointer>(object);
if (!(itk::IterationEvent().CheckEvent(&event)))
{
return;
}
m_Transform->SetParameters(optimizer->GetCurrentPosition());
m_Filter->Update();
m_Connector->SetInput(m_Filter->GetOutput());
m_Connector->Update();
#if VTK_MAJOR_VERSION <= 5
m_ImageActor->SetInput(m_Connector->GetOutput());
#else
m_Connector->Update();
m_ImageActor->GetMapper()->SetInputData(m_Connector->GetOutput());
#endif
m_RenderWindow->Render();
}
void
SetTransform(TransformType::Pointer & transform)
{
m_Transform = transform;
}
void
SetFilter(typename FilterType::Pointer & filter)
{
m_Filter = filter;
}
void
SetConnector(typename ConnectorType::Pointer & connector)
{
m_Connector = connector;
}
void
SetImageActor(vtkImageActor * actor)
{
m_ImageActor = actor;
}
void
SetRenderWindow(vtkRenderWindow * renderWindow)
{
m_RenderWindow = renderWindow;
}
typename FilterType::Pointer m_Filter;
typename ConnectorType::Pointer m_Connector;
vtkImageActor * m_ImageActor;
vtkRenderWindow * m_RenderWindow;
};
int
main(int argc, char * argv[])
{
auto fixedImage = InputImageType::New();
auto movingImage = InputImageType::New();
if (argc > 2)
{
fixedImage = itk::ReadImage<InputImageType>(argv[1]);
movingImage = itk::ReadImage<InputImageType>(argv[2]);
}
else
{
std::cout << "Usage: " << argv[0] << " fixedImage movingImage" << std::endl;
return EXIT_FAILURE;
}
// Use floats internally
using InternalImageType = itk::Image<float, Dimension>;
// Normalize the images
auto fixedNormalizer = NormalizeFilterType::New();
auto movingNormalizer = NormalizeFilterType::New();
fixedNormalizer->SetInput(fixedImage);
movingNormalizer->SetInput(movingImage);
// Smooth the normalized images
auto fixedSmoother = GaussianFilterType::New();
auto movingSmoother = GaussianFilterType::New();
fixedSmoother->SetVariance(3.0);
fixedSmoother->SetInput(fixedNormalizer->GetOutput());
movingSmoother->SetVariance(3.0);
movingSmoother->SetInput(movingNormalizer->GetOutput());
// Set up registration
auto initializer = InitializerType::New();
auto transform = TransformType::New();
auto optimizer = OptimizerType::New();
auto interpolator = InterpolatorType::New();
auto registration = RegistrationType::New();
// Set up the registration framework
initializer->SetFixedImage(fixedImage);
initializer->SetMovingImage(movingImage);
initializer->SetTransform(transform);
transform->SetIdentity();
initializer->GeometryOn();
initializer->InitializeTransform();
registration->SetOptimizer(optimizer);
registration->SetTransform(transform);
registration->SetInterpolator(interpolator);
auto metric = MetricType::New();
registration->SetMetric(metric);
registration->SetFixedImage(fixedSmoother->GetOutput());
registration->SetMovingImage(movingSmoother->GetOutput());
// Update to get the size of the region
fixedNormalizer->Update();
InputImageType::RegionType fixedImageRegion = fixedNormalizer->GetOutput()->GetBufferedRegion();
registration->SetFixedImageRegion(fixedImageRegion);
using ParametersType = RegistrationType::ParametersType;
ParametersType initialParameters(transform->GetNumberOfParameters());
// rotation matrix (identity)
initialParameters[0] = 1.0; // R(0,0)
initialParameters[1] = 0.0; // R(0,1)
initialParameters[2] = 0.0; // R(1,0)
initialParameters[3] = 1.0; // R(1,1)
// translation vector
initialParameters[4] = 0.0;
initialParameters[5] = 0.0;
registration->SetInitialTransformParameters(initialParameters);
const unsigned int numberOfPixels = fixedImageRegion.GetNumberOfPixels();
const auto numberOfSamples = static_cast<unsigned int>(numberOfPixels * 0.05);
metric->SetNumberOfHistogramBins(26);
metric->SetNumberOfSpatialSamples(numberOfSamples);
optimizer->MinimizeOn();
optimizer->SetMaximumStepLength(0.500);
optimizer->SetMinimumStepLength(0.001);
optimizer->SetNumberOfIterations(1000);
const unsigned int numberOfParameters = transform->GetNumberOfParameters();
using OptimizerScalesType = OptimizerType::ScalesType;
OptimizerScalesType optimizerScales(numberOfParameters);
double translationScale = 1.0 / 1000.0;
optimizerScales[0] = 1.0;
optimizerScales[1] = 1.0;
optimizerScales[2] = 1.0;
optimizerScales[3] = 1.0;
optimizerScales[4] = translationScale;
optimizerScales[5] = translationScale;
optimizer->SetScales(optimizerScales);
auto finalTransform = TransformType::New();
finalTransform->SetParameters(initialParameters);
finalTransform->SetFixedParameters(transform->GetFixedParameters());
auto resample = ResampleFilterType::New();
resample->SetTransform(finalTransform);
resample->SetInput(movingImage);
resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize());
resample->SetOutputOrigin(fixedImage->GetOrigin());
resample->SetOutputSpacing(fixedImage->GetSpacing());
resample->SetOutputDirection(fixedImage->GetDirection());
resample->SetDefaultPixelValue(100);
resample->Update();
// Set up the visualization pipeline
using CheckerBoardFilterType = itk::CheckerBoardImageFilter<InputImageType>;
auto checkerboard = CheckerBoardFilterType::New();
CheckerBoardFilterType::PatternArrayType pattern;
pattern[0] = 4;
pattern[1] = 4;
checkerboard->SetCheckerPattern(pattern);
checkerboard->SetInput1(fixedImage);
checkerboard->SetInput2(resample->GetOutput());
using FlipFilterType = itk::FlipImageFilter<InputImageType>;
auto flip = FlipFilterType::New();
bool flipAxes[3] = { false, true, false };
flip->SetFlipAxes(flipAxes);
flip->SetInput(checkerboard->GetOutput());
flip->Update();
// VTK visualization pipeline
auto connector = ConnectorType::New();
connector->SetInput(flip->GetOutput());
vtkSmartPointer<vtkImageActor> actor = vtkSmartPointer<vtkImageActor>::New();
#if VTK_MAJOR_VERSION <= 5
actor->SetInput(connector->GetOutput());
#else
connector->Update();
actor->GetMapper()->SetInputData(connector->GetOutput());
#endif
vtkSmartPointer<vtkRenderWindow> renderWindow = vtkSmartPointer<vtkRenderWindow>::New();
vtkSmartPointer<vtkRenderer> renderer = vtkSmartPointer<vtkRenderer>::New();
renderer->SetBackground(.4, .5, .6);
renderer->AddActor(actor);
renderWindow->SetSize(640, 480);
;
renderWindow->AddRenderer(renderer);
renderWindow->Render();
// Set up the iteration event observer
optimizer->AddObserver(itk::IterationEvent(), observer);
observer->SetTransform(finalTransform);
observer->SetFilter(flip);
observer->SetConnector(connector);
observer->SetImageActor(actor);
observer->SetRenderWindow(renderWindow);
try
{
registration->Update();
std::cout << "Optimizer stop condition: " << registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch (const itk::ExceptionObject & err)
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return EXIT_FAILURE;
}
std::cout << "Final Transform: " << finalTransform << std::endl;
ParametersType finalParameters = registration->GetLastTransformParameters();
std::cout << "Final Parameters: " << finalParameters << std::endl;
unsigned int numberOfIterations = optimizer->GetCurrentIteration();
double bestValue = optimizer->GetValue();
// Print out results
std::cout << std::endl;
std::cout << "Result = " << std::endl;
std::cout << " Iterations = " << numberOfIterations << std::endl;
std::cout << " Metric value = " << bestValue << std::endl;
std::cout << " Numb. Samples = " << numberOfSamples << std::endl;
// Interact with the image
vtkSmartPointer<vtkRenderWindowInteractor> interactor = vtkSmartPointer<vtkRenderWindowInteractor>::New();
vtkSmartPointer<vtkInteractorStyleImage> style = vtkSmartPointer<vtkInteractorStyleImage>::New();
interactor->SetInteractorStyle(style);
interactor->SetRenderWindow(renderWindow);
interactor->Start();
return EXIT_SUCCESS;
}
Pointer
SmartPointer< Self > Pointer
Definition: itkAddImageFilter.h:93
itk::DiscreteGaussianImageFilter
Blurs an image by separable convolution with discrete gaussian kernels. This filter performs Gaussian...
Definition: itkDiscreteGaussianImageFilter.h:64
itkFlipImageFilter.h
itkRegularStepGradientDescentOptimizer.h
itkCenteredTransformInitializer.h
itkImageFileReader.h
itk::CheckerBoardImageFilter
Combines two images in a checkerboard pattern.
Definition: itkCheckerBoardImageFilter.h:46
itk::ImageRegistrationMethod
Base class for Image Registration Methods.
Definition: itkImageRegistrationMethod.h:70
itk::SmartPointer< Self >
itkAffineTransform.h
itk::AffineTransform
Definition: itkAffineTransform.h:101
itk::RegularStepGradientDescentOptimizer
Implement a gradient descent optimizer.
Definition: itkRegularStepGradientDescentOptimizer.h:33
itkImageToVTKImageFilter.h
itkNormalizeImageFilter.h
itk::LinearInterpolateImageFunction
Linearly interpolate an image at specified positions.
Definition: itkLinearInterpolateImageFunction.h:51
itk::Command
Superclass for callback/observer methods.
Definition: itkCommand.h:45
itkCheckerBoardImageFilter.h
itk::NormalizeImageFilter
Normalize an image by setting its mean to zero and variance to one.
Definition: itkNormalizeImageFilter.h:54
itk::Command
class ITK_FORWARD_EXPORT Command
Definition: itkObject.h:42
itk::GTest::TypedefsAndConstructors::Dimension2::RegionType
ImageBaseType::RegionType RegionType
Definition: itkGTestTypedefsAndConstructors.h:54
itkImageRegistrationMethod.h
itk::ImageToVTKImageFilter
Converts an ITK Image into a VTK image and plugs a ITK data pipeline to a VTK data pipeline.
Definition: itkImageToVTKImageFilter.h:47
itk::Command::Execute
virtual void Execute(Object *caller, const EventObject &event)=0
itk::FlipImageFilter
Flips an image across user specified axes.
Definition: itkFlipImageFilter.h:53
itk::Object
Base class for most ITK classes.
Definition: itkObject.h:61
itk::ResampleImageFilter
Resample an image via a coordinate transform.
Definition: itkResampleImageFilter.h:90
itk::Image
Templated n-dimensional image class.
Definition: itkImage.h:88
itk::EventObject
Abstraction of the Events used to communicating among filters and with GUIs.
Definition: itkEventObject.h:58
New
static Pointer New()
AddImageFilter
Definition: itkAddImageFilter.h:81
itk::ImageRegion::GetNumberOfPixels
SizeValueType GetNumberOfPixels() const
itkResampleImageFilter.h
itk::GTest::TypedefsAndConstructors::Dimension2::Dimension
constexpr unsigned int Dimension
Definition: itkGTestTypedefsAndConstructors.h:44
itkCommand.h
itkDiscreteGaussianImageFilter.h
Superclass
BinaryGeneratorImageFilter< TInputImage1, TInputImage2, TOutputImage > Superclass
Definition: itkAddImageFilter.h:90
itkMattesMutualInformationImageToImageMetric.h
itk::CenteredTransformInitializer
CenteredTransformInitializer is a helper class intended to initialize the center of rotation and the ...
Definition: itkCenteredTransformInitializer.h:61
itk::MattesMutualInformationImageToImageMetric
Computes the mutual information between two images to be registered using the method of Mattes et al.
Definition: itkMattesMutualInformationImageToImageMetric.h:117