ITK  6.0.0
Insight Toolkit
Public Types | Public Member Functions | Static Public Member Functions | Protected Member Functions | Private Member Functions | Private Attributes | List of all members

#include <itkCumulativeGaussianOptimizer.h>

Detailed Description

This is an optimizer specific to estimating the parameters of Cumulative Gaussian sampled data.

This optimizer will only work if the data array is sampled from a Cumulative Gaussian curve. It's more of a curve fitter than an optimizer, with the advantage of being fast and specific. It works by taking the derivative of the Cumulative Gaussian sample then repeatedly extending the tails of the Gaussian and recalculating the Gaussian parameters until the change in iterations is within tolerance or very small. The Gaussian is then integrated to reproduce the Cumulative Gaussian and the asymptotes are estimated by using least squares fit to estimate the constant from integration.

Definition at line 48 of file itkCumulativeGaussianOptimizer.h.

+ Inheritance diagram for itk::CumulativeGaussianOptimizer:
+ Collaboration diagram for itk::CumulativeGaussianOptimizer:

Public Types

using ConstPointer = SmartPointer< const Self >
 
using CostFunctionType = CumulativeGaussianCostFunction
 
using MeasureType = CostFunctionType::MeasureType
 
using Pointer = SmartPointer< Self >
 
using Self = CumulativeGaussianOptimizer
 
using Superclass = MultipleValuedNonLinearOptimizer
 
- Public Types inherited from itk::MultipleValuedNonLinearOptimizer
using ConstPointer = SmartPointer< const Self >
 
using CostFunctionPointer = CostFunctionType::Pointer
 
using CostFunctionType = MultipleValuedCostFunction
 
using DerivativeType = Array2D< double >
 
using MeasureType = Array< double >
 
using ParametersType = Superclass::ParametersType
 
using Pointer = SmartPointer< Self >
 
using Self = MultipleValuedNonLinearOptimizer
 
using Superclass = NonLinearOptimizer
 
- Public Types inherited from itk::NonLinearOptimizer
using ConstPointer = SmartPointer< const Self >
 
using ParametersType = Superclass::ParametersType
 
using Pointer = SmartPointer< Self >
 
using ScalesType = Superclass::ScalesType
 
using Self = NonLinearOptimizer
 
using Superclass = Optimizer
 
- Public Types inherited from itk::Optimizer
using ConstPointer = SmartPointer< const Self >
 
using ParametersType = OptimizerParameters< double >
 
using Pointer = SmartPointer< Self >
 
using ScalesType = Array< double >
 
using Self = Optimizer
 
using Superclass = Object
 
- Public Types inherited from itk::Object
using ConstPointer = SmartPointer< const Self >
 
using Pointer = SmartPointer< Self >
 
using Self = Object
 
using Superclass = LightObject
 
- Public Types inherited from itk::LightObject
using ConstPointer = SmartPointer< const Self >
 
using Pointer = SmartPointer< Self >
 
using Self = LightObject
 

Public Member Functions

const char * GetNameOfClass () const override
 
std::string GetStopConditionDescription () const override
 
void PrintArray (MeasureType *array)
 
void SetDataArray (MeasureType *cumGaussianArray)
 
void StartOptimization () override
 
virtual void SetDifferenceTolerance (double _arg)
 
virtual double GetDifferenceTolerance ()
 
virtual void SetVerbose (bool _arg)
 
virtual bool GetVerbose ()
 
virtual void VerboseOn ()
 
virtual double GetComputedMean ()
 
virtual double GetComputedStandardDeviation ()
 
virtual double GetUpperAsymptote ()
 
virtual double GetLowerAsymptote ()
 
virtual MeasureTypeGetFinalSampledArray ()
 
virtual double GetFitError ()
 
- Public Member Functions inherited from itk::MultipleValuedNonLinearOptimizer
const char * GetNameOfClass () const override
 
virtual void SetCostFunction (CostFunctionType *costFunction)
 
- Public Member Functions inherited from itk::NonLinearOptimizer
const char * GetNameOfClass () const override
 
- Public Member Functions inherited from itk::Optimizer
virtual const ParametersTypeGetCurrentPosition () const
 
virtual const ParametersTypeGetInitialPosition () const
 
const char * GetNameOfClass () const override
 
virtual void SetInitialPosition (const ParametersType &param)
 
void SetScales (const ScalesType &scales)
 
virtual const ScalesTypeGetScales () const
 
virtual const ScalesTypeGetInverseScales () const
 
- Public Member Functions inherited from itk::Object
unsigned long AddObserver (const EventObject &event, Command *cmd) const
 
unsigned long AddObserver (const EventObject &event, std::function< void(const EventObject &)> function) const
 
LightObject::Pointer CreateAnother () const override
 
virtual void DebugOff () const
 
virtual void DebugOn () const
 
CommandGetCommand (unsigned long tag)
 
bool GetDebug () const
 
MetaDataDictionaryGetMetaDataDictionary ()
 
const MetaDataDictionaryGetMetaDataDictionary () const
 
virtual ModifiedTimeType GetMTime () const
 
virtual const TimeStampGetTimeStamp () const
 
bool HasObserver (const EventObject &event) const
 
void InvokeEvent (const EventObject &)
 
void InvokeEvent (const EventObject &) const
 
virtual void Modified () const
 
void Register () const override
 
void RemoveAllObservers ()
 
void RemoveObserver (unsigned long tag) const
 
void SetDebug (bool debugFlag) const
 
void SetReferenceCount (int) override
 
void UnRegister () const noexcept override
 
void SetMetaDataDictionary (const MetaDataDictionary &rhs)
 
void SetMetaDataDictionary (MetaDataDictionary &&rrhs)
 
virtual void SetObjectName (std::string _arg)
 
virtual const std::string & GetObjectName () const
 
- Public Member Functions inherited from itk::LightObject
Pointer Clone () const
 
virtual void Delete ()
 
virtual int GetReferenceCount () const
 
void Print (std::ostream &os, Indent indent=0) const
 

Static Public Member Functions

static Pointer New ()
 
- Static Public Member Functions inherited from itk::MultipleValuedNonLinearOptimizer
static Pointer New ()
 
- Static Public Member Functions inherited from itk::NonLinearOptimizer
static Pointer New ()
 
- Static Public Member Functions inherited from itk::Optimizer
static Pointer New ()
 
- Static Public Member Functions inherited from itk::Object
static bool GetGlobalWarningDisplay ()
 
static void GlobalWarningDisplayOff ()
 
static void GlobalWarningDisplayOn ()
 
static Pointer New ()
 
static void SetGlobalWarningDisplay (bool val)
 
- Static Public Member Functions inherited from itk::LightObject
static void BreakOnError ()
 
static Pointer New ()
 

Protected Member Functions

 CumulativeGaussianOptimizer ()
 
void PrintSelf (std::ostream &os, Indent indent) const override
 
 ~CumulativeGaussianOptimizer () override
 
- Protected Member Functions inherited from itk::MultipleValuedNonLinearOptimizer
 MultipleValuedNonLinearOptimizer ()
 
void PrintSelf (std::ostream &os, Indent indent) const override
 
 ~MultipleValuedNonLinearOptimizer () override=default
 
- Protected Member Functions inherited from itk::NonLinearOptimizer
 NonLinearOptimizer ()=default
 
 ~NonLinearOptimizer () override
 
- Protected Member Functions inherited from itk::Optimizer
 Optimizer ()
 
void PrintSelf (std::ostream &os, Indent indent) const override
 
virtual void SetCurrentPosition (const ParametersType &param)
 
 ~Optimizer () override=default
 
- Protected Member Functions inherited from itk::Object
 Object ()
 
bool PrintObservers (std::ostream &os, Indent indent) const
 
virtual void SetTimeStamp (const TimeStamp &timeStamp)
 
 ~Object () override
 
- Protected Member Functions inherited from itk::LightObject
virtual LightObject::Pointer InternalClone () const
 
 LightObject ()
 
virtual void PrintHeader (std::ostream &os, Indent indent) const
 
virtual void PrintTrailer (std::ostream &os, Indent indent) const
 
virtual ~LightObject ()
 

Private Member Functions

MeasureTypeExtendGaussian (MeasureType *originalArray, MeasureType *extendedArray, int startingPointForInsertion)
 
double FindAverageSumOfSquaredDifferences (MeasureType *array1, MeasureType *array2)
 
void FindParametersOfGaussian (MeasureType *sampledGaussianArray)
 
void MeasureGaussianParameters (MeasureType *array)
 
void PrintComputedParameterHeader ()
 
void PrintComputedParameters () const
 
MeasureTypeRecalculateExtendedArrayFromGaussianParameters (MeasureType *originalArray, MeasureType *extendedArray, int startingPointForInsertion) const
 
double VerticalBestShift (MeasureType *originalArray, MeasureType *newArray)
 

Private Attributes

double m_ComputedAmplitude {}
 
double m_ComputedMean {}
 
double m_ComputedStandardDeviation {}
 
double m_ComputedTransitionHeight {}
 
MeasureTypem_CumulativeGaussianArray {}
 
double m_DifferenceTolerance {}
 
MeasureTypem_FinalSampledArray {}
 
double m_FitError {}
 
double m_LowerAsymptote {}
 
double m_OffsetForMean {}
 
std::ostringstream m_StopConditionDescription {}
 
double m_UpperAsymptote {}
 
bool m_Verbose {}
 

Additional Inherited Members

- Protected Attributes inherited from itk::MultipleValuedNonLinearOptimizer
CostFunctionPointer m_CostFunction {}
 
- Protected Attributes inherited from itk::Optimizer
ParametersType m_CurrentPosition {}
 
bool m_ScalesInitialized { false }
 
- Protected Attributes inherited from itk::LightObject
std::atomic< int > m_ReferenceCount {}
 

Member Typedef Documentation

◆ ConstPointer

Definition at line 55 of file itkCumulativeGaussianOptimizer.h.

◆ CostFunctionType

Cost function type alias. NOTE: This optimizer is specific to fitting a Cumulative Gaussian.

Definition at line 59 of file itkCumulativeGaussianOptimizer.h.

◆ MeasureType

Data array type alias.

Definition at line 62 of file itkCumulativeGaussianOptimizer.h.

◆ Pointer

Definition at line 54 of file itkCumulativeGaussianOptimizer.h.

◆ Self

Standard type alias.

Definition at line 52 of file itkCumulativeGaussianOptimizer.h.

◆ Superclass

Definition at line 53 of file itkCumulativeGaussianOptimizer.h.

Constructor & Destructor Documentation

◆ CumulativeGaussianOptimizer()

itk::CumulativeGaussianOptimizer::CumulativeGaussianOptimizer ( )
protected

◆ ~CumulativeGaussianOptimizer()

itk::CumulativeGaussianOptimizer::~CumulativeGaussianOptimizer ( )
overrideprotected

Member Function Documentation

◆ ExtendGaussian()

MeasureType* itk::CumulativeGaussianOptimizer::ExtendGaussian ( MeasureType originalArray,
MeasureType extendedArray,
int  startingPointForInsertion 
)
private

Extend the tails of the Gaussian.

◆ FindAverageSumOfSquaredDifferences()

double itk::CumulativeGaussianOptimizer::FindAverageSumOfSquaredDifferences ( MeasureType array1,
MeasureType array2 
)
private

Calculates the squared difference error between each Gaussian iteration loop.

◆ FindParametersOfGaussian()

void itk::CumulativeGaussianOptimizer::FindParametersOfGaussian ( MeasureType sampledGaussianArray)
private

Given an array sampled from a Gaussian, compute the final parameters.

◆ GetComputedMean()

virtual double itk::CumulativeGaussianOptimizer::GetComputedMean ( )
virtual

Set and get macros.

◆ GetComputedStandardDeviation()

virtual double itk::CumulativeGaussianOptimizer::GetComputedStandardDeviation ( )
virtual

Set and get macros.

◆ GetDifferenceTolerance()

virtual double itk::CumulativeGaussianOptimizer::GetDifferenceTolerance ( )
virtual

Set and get macros.

◆ GetFinalSampledArray()

virtual MeasureType* itk::CumulativeGaussianOptimizer::GetFinalSampledArray ( )
virtual

Set and get macros.

◆ GetFitError()

virtual double itk::CumulativeGaussianOptimizer::GetFitError ( )
virtual

Set and get macros.

◆ GetLowerAsymptote()

virtual double itk::CumulativeGaussianOptimizer::GetLowerAsymptote ( )
virtual

Set and get macros.

◆ GetNameOfClass()

const char* itk::CumulativeGaussianOptimizer::GetNameOfClass ( ) const
overridevirtual
See also
LightObject::GetNameOfClass()

Reimplemented from itk::Object.

◆ GetStopConditionDescription()

std::string itk::CumulativeGaussianOptimizer::GetStopConditionDescription ( ) const
overridevirtual

Report the reason for stopping.

Reimplemented from itk::Optimizer.

◆ GetUpperAsymptote()

virtual double itk::CumulativeGaussianOptimizer::GetUpperAsymptote ( )
virtual

Set and get macros.

◆ GetVerbose()

virtual bool itk::CumulativeGaussianOptimizer::GetVerbose ( )
virtual

Set and get macros.

◆ MeasureGaussianParameters()

void itk::CumulativeGaussianOptimizer::MeasureGaussianParameters ( MeasureType array)
private

Measure the parameters of a Gaussian sampled array.

◆ New()

static Pointer itk::CumulativeGaussianOptimizer::New ( )
static

Method for creation through the object factory.

◆ PrintArray()

void itk::CumulativeGaussianOptimizer::PrintArray ( MeasureType array)

Print an array.

◆ PrintComputedParameterHeader()

void itk::CumulativeGaussianOptimizer::PrintComputedParameterHeader ( )
private

Print the header for output table.

◆ PrintComputedParameters()

void itk::CumulativeGaussianOptimizer::PrintComputedParameters ( ) const
private

Print the computed parameters.

◆ PrintSelf()

void itk::CumulativeGaussianOptimizer::PrintSelf ( std::ostream &  os,
Indent  indent 
) const
overrideprotectedvirtual

Methods invoked by Print() to print information about the object including superclasses. Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.

Reimplemented from itk::Object.

◆ RecalculateExtendedArrayFromGaussianParameters()

MeasureType* itk::CumulativeGaussianOptimizer::RecalculateExtendedArrayFromGaussianParameters ( MeasureType originalArray,
MeasureType extendedArray,
int  startingPointForInsertion 
) const
private

Recalculate the parameters of the extended Gaussian array.

◆ SetDataArray()

void itk::CumulativeGaussianOptimizer::SetDataArray ( MeasureType cumGaussianArray)

◆ SetDifferenceTolerance()

virtual void itk::CumulativeGaussianOptimizer::SetDifferenceTolerance ( double  _arg)
virtual

Set and get macros.

◆ SetVerbose()

virtual void itk::CumulativeGaussianOptimizer::SetVerbose ( bool  _arg)
virtual

Set and get macros.

◆ StartOptimization()

void itk::CumulativeGaussianOptimizer::StartOptimization ( )
overridevirtual

Start the optimizer.

Reimplemented from itk::Optimizer.

◆ VerboseOn()

virtual void itk::CumulativeGaussianOptimizer::VerboseOn ( )
virtual

Set and get macros.

◆ VerticalBestShift()

double itk::CumulativeGaussianOptimizer::VerticalBestShift ( MeasureType originalArray,
MeasureType newArray 
)
private

Find the constant of the integrated sample.

Member Data Documentation

◆ m_ComputedAmplitude

double itk::CumulativeGaussianOptimizer::m_ComputedAmplitude {}
private

The final amplitude of the Gaussian.

Definition at line 116 of file itkCumulativeGaussianOptimizer.h.

◆ m_ComputedMean

double itk::CumulativeGaussianOptimizer::m_ComputedMean {}
private

The final mean of the Cumulative Gaussian.

Definition at line 110 of file itkCumulativeGaussianOptimizer.h.

◆ m_ComputedStandardDeviation

double itk::CumulativeGaussianOptimizer::m_ComputedStandardDeviation {}
private

The final standard deviation of the Cumulative Gaussian.

Definition at line 113 of file itkCumulativeGaussianOptimizer.h.

◆ m_ComputedTransitionHeight

double itk::CumulativeGaussianOptimizer::m_ComputedTransitionHeight {}
private

The transition height (distance between upper and lower asymptotes) of the Cumulative Gaussian.

Definition at line 120 of file itkCumulativeGaussianOptimizer.h.

◆ m_CumulativeGaussianArray

MeasureType* itk::CumulativeGaussianOptimizer::m_CumulativeGaussianArray {}
private

Original data array.

Definition at line 142 of file itkCumulativeGaussianOptimizer.h.

◆ m_DifferenceTolerance

double itk::CumulativeGaussianOptimizer::m_DifferenceTolerance {}
private

When to stop the iteration for the Gaussian extension loop.

Definition at line 107 of file itkCumulativeGaussianOptimizer.h.

◆ m_FinalSampledArray

MeasureType* itk::CumulativeGaussianOptimizer::m_FinalSampledArray {}
private

Array of values computed from the final parameters of the Cumulative Gaussian.

Definition at line 139 of file itkCumulativeGaussianOptimizer.h.

◆ m_FitError

double itk::CumulativeGaussianOptimizer::m_FitError {}
private

Least squares fit error as a measure of goodness.

Definition at line 135 of file itkCumulativeGaussianOptimizer.h.

◆ m_LowerAsymptote

double itk::CumulativeGaussianOptimizer::m_LowerAsymptote {}
private

The final lower asymptote of the Cumulative Gaussian.

Definition at line 126 of file itkCumulativeGaussianOptimizer.h.

◆ m_OffsetForMean

double itk::CumulativeGaussianOptimizer::m_OffsetForMean {}
private

Offset for the mean calculation.

Definition at line 129 of file itkCumulativeGaussianOptimizer.h.

◆ m_StopConditionDescription

std::ostringstream itk::CumulativeGaussianOptimizer::m_StopConditionDescription {}
private

Describe the stop condition

Definition at line 180 of file itkCumulativeGaussianOptimizer.h.

◆ m_UpperAsymptote

double itk::CumulativeGaussianOptimizer::m_UpperAsymptote {}
private

The final upper asymptote of the Cumulative Gaussian.

Definition at line 123 of file itkCumulativeGaussianOptimizer.h.

◆ m_Verbose

bool itk::CumulativeGaussianOptimizer::m_Verbose {}
private

Flag to print iteration results.

Definition at line 132 of file itkCumulativeGaussianOptimizer.h.


The documentation for this class was generated from the following file: