ITK  6.0.0
Insight Toolkit
Public Types | Public Member Functions | Static Public Member Functions | Protected Member Functions | Protected Attributes | Private Attributes | List of all members
itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType > Class Template Reference

#include <itkQuasiNewtonOptimizerv4.h>

Detailed Description

template<typename TInternalComputationValueType>
class itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >

Implement a Quasi-Newton optimizer with BFGS Hessian estimation.

Second order approximation of the cost function is usually more efficient since it estimates the descent or ascent direction more precisely. However, computation of Hessian is usually expensive or unavailable. Alternatively Quasi-Newton methods can estimate a Hessian from the gradients in previous steps. Here a specific Quasi-Newton method, BFGS, is used to compute the Quasi-Newton steps.

The Quasi-Newton method doesn't produce a valid step sometimes, ex. when the metric function is not a convex locally. In this scenario, the gradient step is used after being scaled properly.

A helper member object, m_ScalesEstimator may be set to estimate parameter scales and step scales. A step scale measures the magnitude of a step and is used for learning rate computation.

When m_ScalesEstimator is set, SetMaximumNewtonStepSizeInPhysicalUnits() may be called to set the maximum step size. If it is not called, m_MaximumNewtonStepSizeInPhysicalUnits defaults to lambda * OptimizerParameterScalesEstimatorTemplate::EstimateMaximumStepSize(), where lambda is in [1,5].

When m_ScalesEstimator is not set, the parameter scales and learning rates defaults to ones, or can be set by users manually.

Definition at line 61 of file itkQuasiNewtonOptimizerv4.h.

+ Inheritance diagram for itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >:
+ Collaboration diagram for itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >:

Public Types

using ConstPointer = SmartPointer< const Self >
 
using HessianArrayType = std::vector< HessianType >
 
using HessianType = itk::Array2D< TInternalComputationValueType >
 
using InternalComputationValueType = TInternalComputationValueType
 
using Pointer = SmartPointer< Self >
 
using Self = QuasiNewtonOptimizerv4Template
 
using Superclass = GradientDescentOptimizerv4Template< TInternalComputationValueType >
 
- Public Types inherited from itk::GradientDescentOptimizerv4Template< TInternalComputationValueType >
using ConstPointer = SmartPointer< const Self >
 
using InternalComputationValueType = TInternalComputationValueType
 
using Pointer = SmartPointer< Self >
 
using Self = GradientDescentOptimizerv4Template
 
using Superclass = GradientDescentOptimizerBasev4Template< TInternalComputationValueType >
 
- Public Types inherited from itk::GradientDescentOptimizerBasev4Template< TInternalComputationValueType >
using ConstPointer = SmartPointer< const Self >
 
using ConvergenceMonitoringType = itk::Function::WindowConvergenceMonitoringFunction< TInternalComputationValueType >
 
using IndexRangeType = ThreadedIndexedContainerPartitioner::IndexRangeType
 
using InternalComputationValueType = TInternalComputationValueType
 
using MetricTypePointer = typename MetricType::Pointer
 
using Pointer = SmartPointer< Self >
 
using Self = GradientDescentOptimizerBasev4Template
 
using Superclass = ObjectToObjectOptimizerBaseTemplate< TInternalComputationValueType >
 
- Public Types inherited from itk::ObjectToObjectOptimizerBaseTemplate< TInternalComputationValueType >
using ConstPointer = SmartPointer< const Self >
 
using DerivativeType = typename MetricType::DerivativeType
 
using MeasureType = typename MetricType::MeasureType
 
using MetricType = ObjectToObjectMetricBaseTemplate< TInternalComputationValueType >
 
using MetricTypePointer = typename MetricType::Pointer
 
using NumberOfParametersType = typename MetricType::NumberOfParametersType
 
using ParametersType = OptimizerParameters< TInternalComputationValueType >
 
using Pointer = SmartPointer< Self >
 
using ScalesEstimatorType = OptimizerParameterScalesEstimatorTemplate< TInternalComputationValueType >
 
using ScalesType = OptimizerParameters< TInternalComputationValueType >
 
using Self = ObjectToObjectOptimizerBaseTemplate
 
using StopConditionDescriptionType = std::ostringstream
 
using StopConditionReturnStringType = std::string
 
using Superclass = Object
 
- Public Types inherited from itk::Object
using ConstPointer = SmartPointer< const Self >
 
using Pointer = SmartPointer< Self >
 
using Self = Object
 
using Superclass = LightObject
 
- Public Types inherited from itk::LightObject
using ConstPointer = SmartPointer< const Self >
 
using Pointer = SmartPointer< Self >
 
using Self = LightObject
 

Public Member Functions

virtual void EstimateNewtonStepOverSubRange (const IndexRangeType &subrange)
 
const char * GetNameOfClass () const override
 
virtual const DerivativeTypeGetNewtonStep () const
 
virtual void SetMaximumIterationsWithoutProgress (SizeValueType _arg)
 
virtual void SetMaximumNewtonStepSizeInPhysicalUnits (TInternalComputationValueType _arg)
 
void StartOptimization (bool doOnlyInitialization=false) override
 
- Public Member Functions inherited from itk::GradientDescentOptimizerv4Template< TInternalComputationValueType >
virtual void EstimateLearningRate ()
 
virtual const TInternalComputationValueType & GetConvergenceValue () const
 
void ResumeOptimization () override
 
virtual void SetConvergenceWindowSize (SizeValueType _arg)
 
virtual void SetMinimumConvergenceValue (TInternalComputationValueType _arg)
 
void StopOptimization () override
 
virtual void SetLearningRate (TInternalComputationValueType _arg)
 
virtual const TInternalComputationValueType & GetLearningRate () const
 
virtual void SetMaximumStepSizeInPhysicalUnits (TInternalComputationValueType _arg)
 
virtual const TInternalComputationValueType & GetMaximumStepSizeInPhysicalUnits () const
 
virtual void SetDoEstimateLearningRateAtEachIteration (bool _arg)
 
virtual const bool & GetDoEstimateLearningRateAtEachIteration () const
 
virtual void DoEstimateLearningRateAtEachIterationOn ()
 
virtual void SetDoEstimateLearningRateOnce (bool _arg)
 
virtual const bool & GetDoEstimateLearningRateOnce () const
 
virtual void DoEstimateLearningRateOnceOn ()
 
virtual void SetReturnBestParametersAndValue (bool _arg)
 
virtual const bool & GetReturnBestParametersAndValue () const
 
virtual void ReturnBestParametersAndValueOn ()
 
- Public Member Functions inherited from itk::GradientDescentOptimizerBasev4Template< TInternalComputationValueType >
virtual const DerivativeTypeGetGradient () const
 
virtual const StopConditionObjectToObjectOptimizerEnumGetStopCondition () const
 
StopConditionReturnStringType GetStopConditionDescription () const override
 
virtual void ModifyGradientByScales ()
 
virtual void ModifyGradientByLearningRate ()
 
- Public Member Functions inherited from itk::ObjectToObjectOptimizerBaseTemplate< TInternalComputationValueType >
virtual bool CanUseScales () const
 
virtual SizeValueType GetCurrentIteration () const
 
virtual const MeasureTypeGetCurrentMetricValue () const
 
virtual const ParametersTypeGetCurrentPosition () const
 
virtual SizeValueType GetNumberOfIterations () const
 
virtual const ThreadIdTypeGetNumberOfWorkUnits () const
 
virtual const ScalesTypeGetScales () const
 
virtual const bool & GetScalesAreIdentity () const
 
bool GetScalesInitialized () const
 
virtual const MeasureTypeGetValue () const
 
virtual const ScalesTypeGetWeights () const
 
virtual const bool & GetWeightsAreIdentity () const
 
virtual void SetNumberOfIterations (SizeValueType _arg)
 
virtual void SetNumberOfWorkUnits (ThreadIdType number)
 
virtual void SetScalesEstimator (ScalesEstimatorType *_arg)
 
virtual void SetWeights (ScalesType _arg)
 
virtual void SetMetric (MetricType *_arg)
 
virtual MetricTypeGetModifiableMetric ()
 
virtual void SetScales (const ScalesType &scales)
 
virtual void SetDoEstimateScales (bool _arg)
 
virtual const bool & GetDoEstimateScales () const
 
virtual void DoEstimateScalesOn ()
 
- Public Member Functions inherited from itk::Object
unsigned long AddObserver (const EventObject &event, Command *cmd) const
 
unsigned long AddObserver (const EventObject &event, std::function< void(const EventObject &)> function) const
 
LightObject::Pointer CreateAnother () const override
 
virtual void DebugOff () const
 
virtual void DebugOn () const
 
CommandGetCommand (unsigned long tag)
 
bool GetDebug () const
 
MetaDataDictionaryGetMetaDataDictionary ()
 
const MetaDataDictionaryGetMetaDataDictionary () const
 
virtual ModifiedTimeType GetMTime () const
 
virtual const TimeStampGetTimeStamp () const
 
bool HasObserver (const EventObject &event) const
 
void InvokeEvent (const EventObject &)
 
void InvokeEvent (const EventObject &) const
 
virtual void Modified () const
 
void Register () const override
 
void RemoveAllObservers ()
 
void RemoveObserver (unsigned long tag) const
 
void SetDebug (bool debugFlag) const
 
void SetReferenceCount (int) override
 
void UnRegister () const noexcept override
 
void SetMetaDataDictionary (const MetaDataDictionary &rhs)
 
void SetMetaDataDictionary (MetaDataDictionary &&rrhs)
 
virtual void SetObjectName (std::string _arg)
 
virtual const std::string & GetObjectName () const
 
- Public Member Functions inherited from itk::LightObject
Pointer Clone () const
 
virtual void Delete ()
 
virtual int GetReferenceCount () const
 
void Print (std::ostream &os, Indent indent=0) const
 

Static Public Member Functions

static Pointer New ()
 
- Static Public Member Functions inherited from itk::GradientDescentOptimizerv4Template< TInternalComputationValueType >
static Pointer New ()
 
- Static Public Member Functions inherited from itk::Object
static bool GetGlobalWarningDisplay ()
 
static void GlobalWarningDisplayOff ()
 
static void GlobalWarningDisplayOn ()
 
static Pointer New ()
 
static void SetGlobalWarningDisplay (bool val)
 
- Static Public Member Functions inherited from itk::LightObject
static void BreakOnError ()
 
static Pointer New ()
 

Protected Member Functions

void AdvanceOneStep () override
 
void CombineGradientNewtonStep ()
 
virtual bool ComputeHessianAndStepWithBFGS (IndexValueType loc)
 
virtual void EstimateNewtonStep ()
 
void ModifyCombinedNewtonStep ()
 
void PrintSelf (std::ostream &os, Indent indent) const override
 
 QuasiNewtonOptimizerv4Template ()
 
virtual void ResetNewtonStep (IndexValueType loc)
 
 ~QuasiNewtonOptimizerv4Template () override=default
 
- Protected Member Functions inherited from itk::GradientDescentOptimizerv4Template< TInternalComputationValueType >
 GradientDescentOptimizerv4Template ()
 
void ModifyGradientByLearningRateOverSubRange (const IndexRangeType &subrange) override
 
void ModifyGradientByScalesOverSubRange (const IndexRangeType &subrange) override
 
 ~GradientDescentOptimizerv4Template () override=default
 
- Protected Member Functions inherited from itk::GradientDescentOptimizerBasev4Template< TInternalComputationValueType >
 GradientDescentOptimizerBasev4Template ()
 
 ~GradientDescentOptimizerBasev4Template () override=default
 
- Protected Member Functions inherited from itk::ObjectToObjectOptimizerBaseTemplate< TInternalComputationValueType >
 ObjectToObjectOptimizerBaseTemplate ()
 
 ~ObjectToObjectOptimizerBaseTemplate () override
 
- Protected Member Functions inherited from itk::Object
 Object ()
 
bool PrintObservers (std::ostream &os, Indent indent) const
 
virtual void SetTimeStamp (const TimeStamp &timeStamp)
 
 ~Object () override
 
- Protected Member Functions inherited from itk::LightObject
virtual LightObject::Pointer InternalClone () const
 
 LightObject ()
 
virtual void PrintHeader (std::ostream &os, Indent indent) const
 
virtual void PrintTrailer (std::ostream &os, Indent indent) const
 
virtual ~LightObject ()
 

Protected Attributes

SizeValueType m_BestIteration { 0 }
 
ParametersType m_BestPosition {}
 
MeasureType m_BestValue {}
 
ParametersType m_CurrentPosition {}
 
HessianArrayType m_HessianArray {}
 
SizeValueType m_MaximumIterationsWithoutProgress { 30 }
 
TInternalComputationValueType m_MaximumNewtonStepSizeInPhysicalUnits {}
 
DerivativeType m_NewtonStep {}
 
BooleanStdVectorType m_NewtonStepValidFlags {}
 
std::string m_NewtonStepWarning {}
 
ParametersType m_OptimalStep {}
 
ParametersType m_PreviousPosition {}
 
MeasureType m_PreviousValue {}
 
- Protected Attributes inherited from itk::GradientDescentOptimizerv4Template< TInternalComputationValueType >
ParametersType m_BestParameters {}
 
TInternalComputationValueType m_ConvergenceValue {}
 
MeasureType m_CurrentBestValue {}
 
TInternalComputationValueType m_LearningRate {}
 
TInternalComputationValueType m_MinimumConvergenceValue {}
 
DerivativeType m_PreviousGradient {}
 
bool m_ReturnBestParametersAndValue { false }
 
- Protected Attributes inherited from itk::GradientDescentOptimizerBasev4Template< TInternalComputationValueType >
ConvergenceMonitoringType::Pointer m_ConvergenceMonitoring {}
 
SizeValueType m_ConvergenceWindowSize {}
 
bool m_DoEstimateLearningRateAtEachIteration {}
 
bool m_DoEstimateLearningRateOnce {}
 
DerivativeType m_Gradient {}
 
TInternalComputationValueType m_MaximumStepSizeInPhysicalUnits {}
 
DomainThreader< ThreadedIndexedContainerPartitioner, Self >::Pointer m_ModifyGradientByLearningRateThreader {}
 
DomainThreader< ThreadedIndexedContainerPartitioner, Self >::Pointer m_ModifyGradientByScalesThreader {}
 
bool m_Stop { false }
 
StopConditionObjectToObjectOptimizerEnum m_StopCondition {}
 
StopConditionDescriptionType m_StopConditionDescription {}
 
bool m_UseConvergenceMonitoring {}
 
- Protected Attributes inherited from itk::ObjectToObjectOptimizerBaseTemplate< TInternalComputationValueType >
SizeValueType m_CurrentIteration {}
 
MeasureType m_CurrentMetricValue {}
 
bool m_DoEstimateScales {}
 
MetricTypePointer m_Metric {}
 
SizeValueType m_NumberOfIterations {}
 
ThreadIdType m_NumberOfWorkUnits {}
 
ScalesType m_Scales {}
 
bool m_ScalesAreIdentity {}
 
ScalesEstimatorType::Pointer m_ScalesEstimator {}
 
ScalesType m_Weights {}
 
bool m_WeightsAreIdentity {}
 
- Protected Attributes inherited from itk::LightObject
std::atomic< int > m_ReferenceCount {}
 

Private Attributes

DomainThreader< ThreadedIndexedContainerPartitioner, Self >::Pointer m_EstimateNewtonStepThreader {}
 

Member Typedef Documentation

◆ ConstPointer

template<typename TInternalComputationValueType >
using itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::ConstPointer = SmartPointer<const Self>

Definition at line 71 of file itkQuasiNewtonOptimizerv4.h.

◆ HessianArrayType

template<typename TInternalComputationValueType >
using itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::HessianArrayType = std::vector<HessianType>

Type for an array of Hessian matrix for local support

Definition at line 91 of file itkQuasiNewtonOptimizerv4.h.

◆ HessianType

template<typename TInternalComputationValueType >
using itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::HessianType = itk::Array2D<TInternalComputationValueType>

Type for Hessian matrix in the Quasi-Newton method

Definition at line 88 of file itkQuasiNewtonOptimizerv4.h.

◆ InternalComputationValueType

template<typename TInternalComputationValueType >
using itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::InternalComputationValueType = TInternalComputationValueType

It should be possible to derive the internal computation type from the class object.

Definition at line 80 of file itkQuasiNewtonOptimizerv4.h.

◆ Pointer

template<typename TInternalComputationValueType >
using itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::Pointer = SmartPointer<Self>

Definition at line 70 of file itkQuasiNewtonOptimizerv4.h.

◆ Self

template<typename TInternalComputationValueType >
using itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::Self = QuasiNewtonOptimizerv4Template

Standard class type aliases.

Definition at line 68 of file itkQuasiNewtonOptimizerv4.h.

◆ Superclass

template<typename TInternalComputationValueType >
using itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::Superclass = GradientDescentOptimizerv4Template<TInternalComputationValueType>

Definition at line 69 of file itkQuasiNewtonOptimizerv4.h.

Constructor & Destructor Documentation

◆ QuasiNewtonOptimizerv4Template()

template<typename TInternalComputationValueType >
itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::QuasiNewtonOptimizerv4Template ( )
protected

◆ ~QuasiNewtonOptimizerv4Template()

template<typename TInternalComputationValueType >
itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::~QuasiNewtonOptimizerv4Template ( )
overrideprotecteddefault

Member Function Documentation

◆ AdvanceOneStep()

template<typename TInternalComputationValueType >
void itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::AdvanceOneStep ( )
overrideprotectedvirtual

Advance one step using the Quasi-Newton step. When the Newton step is invalid, the gradient step will be used.

Reimplemented from itk::GradientDescentOptimizerv4Template< TInternalComputationValueType >.

◆ CombineGradientNewtonStep()

template<typename TInternalComputationValueType >
void itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::CombineGradientNewtonStep ( )
protected

Combine a gradient step with a Newton step. The Newton step will be used when it is valid. Otherwise the gradient step will be used.

◆ ComputeHessianAndStepWithBFGS()

template<typename TInternalComputationValueType >
virtual bool itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::ComputeHessianAndStepWithBFGS ( IndexValueType  loc)
protectedvirtual

Estimate the next Hessian and step with BFGS method. The details of the method are described at https://en.wikipedia.org/wiki/BFGS_method .

◆ EstimateNewtonStep()

template<typename TInternalComputationValueType >
virtual void itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::EstimateNewtonStep ( )
protectedvirtual

Estimate a Newton step

◆ EstimateNewtonStepOverSubRange()

template<typename TInternalComputationValueType >
virtual void itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::EstimateNewtonStepOverSubRange ( const IndexRangeType subrange)
virtual

Estimate the quasi-newton step over a given index range. This function is used in QuasiNewtonOptimizerv4EstimateNewtonStepThreaderTemplate class.

◆ GetNameOfClass()

template<typename TInternalComputationValueType >
const char* itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::GetNameOfClass ( ) const
overridevirtual

◆ GetNewtonStep()

template<typename TInternalComputationValueType >
virtual const DerivativeType& itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::GetNewtonStep ( ) const
virtual

Get the most recent Newton step.

◆ ModifyCombinedNewtonStep()

template<typename TInternalComputationValueType >
void itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::ModifyCombinedNewtonStep ( )
protected

Estimate and apply the learning rate(s) for a combined Newton step. A combined Newton step uses the Newton step by default and the gradient step when the Newton step is not valid.

The learning rate is less than 1.0 and is restricted by m_MaximumNewtonStepSizeInPhysicalUnits.

◆ New()

template<typename TInternalComputationValueType >
static Pointer itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::New ( )
static

Method for creation through the object factory.

◆ PrintSelf()

template<typename TInternalComputationValueType >
void itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::PrintSelf ( std::ostream &  os,
Indent  indent 
) const
overrideprotectedvirtual

Methods invoked by Print() to print information about the object including superclasses. Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.

Reimplemented from itk::GradientDescentOptimizerv4Template< TInternalComputationValueType >.

◆ ResetNewtonStep()

template<typename TInternalComputationValueType >
virtual void itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::ResetNewtonStep ( IndexValueType  loc)
protectedvirtual

Reset the Hessian to identity matrix and the Newton step to zeros.

◆ SetMaximumIterationsWithoutProgress()

template<typename TInternalComputationValueType >
virtual void itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::SetMaximumIterationsWithoutProgress ( SizeValueType  _arg)
virtual

Set the maximum tolerable number of iteration without any progress

◆ SetMaximumNewtonStepSizeInPhysicalUnits()

template<typename TInternalComputationValueType >
virtual void itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::SetMaximumNewtonStepSizeInPhysicalUnits ( TInternalComputationValueType  _arg)
virtual

Set the maximum step size.

When SetScalesEstimator is called by user, the optimizer will compute learning rates as m_MaximumNewtonStepSizeInPhysicalUnits / m_ScalesEstimator->EstimateStepScale(newtonStep).

If SetMaximumNewtonStepSizeInPhysicalUnits is not called by user, m_MaximumNewtonStepSizeInPhysicalUnits defaults to lambda * m_ScalesEstimator->EstimateMaximumStepSize(),

where EstimateMaximumStepSize returns one voxel spacing and lambda may be in [1,5] according to our experience.

◆ StartOptimization()

template<typename TInternalComputationValueType >
void itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::StartOptimization ( bool  doOnlyInitialization = false)
overridevirtual

Start and run the optimization

Reimplemented from itk::GradientDescentOptimizerv4Template< TInternalComputationValueType >.

Member Data Documentation

◆ m_BestIteration

template<typename TInternalComputationValueType >
SizeValueType itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::m_BestIteration { 0 }
protected

Definition at line 141 of file itkQuasiNewtonOptimizerv4.h.

◆ m_BestPosition

template<typename TInternalComputationValueType >
ParametersType itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::m_BestPosition {}
protected

Definition at line 140 of file itkQuasiNewtonOptimizerv4.h.

◆ m_BestValue

template<typename TInternalComputationValueType >
MeasureType itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::m_BestValue {}
protected

The best value so far and relevant information

Definition at line 139 of file itkQuasiNewtonOptimizerv4.h.

◆ m_CurrentPosition

template<typename TInternalComputationValueType >
ParametersType itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::m_CurrentPosition {}
protected

The information about the current step

Definition at line 131 of file itkQuasiNewtonOptimizerv4.h.

◆ m_EstimateNewtonStepThreader

template<typename TInternalComputationValueType >
DomainThreader<ThreadedIndexedContainerPartitioner, Self>::Pointer itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::m_EstimateNewtonStepThreader {}
private

Threader for Newton step estimation.

Definition at line 207 of file itkQuasiNewtonOptimizerv4.h.

◆ m_HessianArray

template<typename TInternalComputationValueType >
HessianArrayType itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::m_HessianArray {}
protected

The Hessian with local support

Definition at line 153 of file itkQuasiNewtonOptimizerv4.h.

◆ m_MaximumIterationsWithoutProgress

template<typename TInternalComputationValueType >
SizeValueType itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::m_MaximumIterationsWithoutProgress { 30 }
protected

The maximum tolerable number of iteration without any progress

Definition at line 128 of file itkQuasiNewtonOptimizerv4.h.

◆ m_MaximumNewtonStepSizeInPhysicalUnits

template<typename TInternalComputationValueType >
TInternalComputationValueType itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::m_MaximumNewtonStepSizeInPhysicalUnits {}
protected

The maximum Quasi-Newton step size to restrict learning rates.

Definition at line 150 of file itkQuasiNewtonOptimizerv4.h.

◆ m_NewtonStep

template<typename TInternalComputationValueType >
DerivativeType itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::m_NewtonStep {}
protected

The Quasi-Newton step

Definition at line 144 of file itkQuasiNewtonOptimizerv4.h.

◆ m_NewtonStepValidFlags

template<typename TInternalComputationValueType >
BooleanStdVectorType itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::m_NewtonStepValidFlags {}
protected

Valid flag for the Quasi-Newton steps.

Definition at line 157 of file itkQuasiNewtonOptimizerv4.h.

◆ m_NewtonStepWarning

template<typename TInternalComputationValueType >
std::string itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::m_NewtonStepWarning {}
protected

Warning message during Quasi-Newton step estimation

Definition at line 147 of file itkQuasiNewtonOptimizerv4.h.

◆ m_OptimalStep

template<typename TInternalComputationValueType >
ParametersType itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::m_OptimalStep {}
protected

Definition at line 132 of file itkQuasiNewtonOptimizerv4.h.

◆ m_PreviousPosition

template<typename TInternalComputationValueType >
ParametersType itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::m_PreviousPosition {}
protected

Definition at line 136 of file itkQuasiNewtonOptimizerv4.h.

◆ m_PreviousValue

template<typename TInternalComputationValueType >
MeasureType itk::QuasiNewtonOptimizerv4Template< TInternalComputationValueType >::m_PreviousValue {}
protected

The information about the previous step

Definition at line 135 of file itkQuasiNewtonOptimizerv4.h.


The documentation for this class was generated from the following file: