ITK
4.2.0
Insight Segmentation and Registration Toolkit
|
#include <itkIterativeSupervisedTrainingFunction.h>
Public Member Functions | |
virtual ::itk::LightObject::Pointer | CreateAnother (void) const |
virtual const char * | GetNameOfClass () const |
void | SetNumOfIterations (SizeValueType i) |
virtual void | SetThreshold (ScalarType _arg) |
virtual void | Train (NetworkType *net, TSample *samples, TTargetVector *targets) |
Public Member Functions inherited from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType > | |
VectorType | defaultconverter (typename TSample::MeasurementVectorType v) |
virtual const SizeValueType & | GetIterations () |
ValueType | GetLearningRate () |
virtual void | SetIterations (SizeValueType _arg) |
void | SetLearningRate (ValueType) |
void | SetPerformanceFunction (PerformanceFunctionType *f) |
void | SetTargetValues (TTargetVector *targets) |
void | SetTrainingSamples (TSample *samples) |
OutputVectorType | targetconverter (typename TTargetVector::MeasurementVectorType v) |
virtual void | Train (NetworkType *, TSample *, TTargetVector *) |
Public Member Functions inherited from itk::LightProcessObject | |
virtual void | AbortGenerateDataOff () |
virtual void | AbortGenerateDataOn () |
virtual const bool & | GetAbortGenerateData () |
virtual void | SetAbortGenerateData (bool _arg) |
virtual void | UpdateOutputData () |
void | UpdateProgress (float amount) |
virtual void | SetProgress (float _arg) |
virtual const float & | GetProgress () |
Public Member Functions inherited from itk::Object | |
unsigned long | AddObserver (const EventObject &event, Command *) |
unsigned long | AddObserver (const EventObject &event, Command *) const |
virtual void | DebugOff () const |
virtual void | DebugOn () const |
Command * | GetCommand (unsigned long tag) |
bool | GetDebug () const |
MetaDataDictionary & | GetMetaDataDictionary (void) |
const MetaDataDictionary & | GetMetaDataDictionary (void) const |
virtual unsigned long | GetMTime () const |
virtual const TimeStamp & | GetTimeStamp () const |
bool | HasObserver (const EventObject &event) const |
void | InvokeEvent (const EventObject &) |
void | InvokeEvent (const EventObject &) const |
virtual void | Modified () const |
virtual void | Register () const |
void | RemoveAllObservers () |
void | RemoveObserver (unsigned long tag) |
void | SetDebug (bool debugFlag) const |
void | SetMetaDataDictionary (const MetaDataDictionary &rhs) |
virtual void | SetReferenceCount (int) |
virtual void | UnRegister () const |
Public Member Functions inherited from itk::LightObject | |
virtual void | Delete () |
virtual int | GetReferenceCount () const |
itkCloneMacro (Self) | |
void | Print (std::ostream &os, Indent indent=0) const |
Static Public Member Functions | |
static Pointer | New () |
Protected Member Functions | |
IterativeSupervisedTrainingFunction () | |
virtual void | PrintSelf (std::ostream &os, Indent indent) const |
virtual | ~IterativeSupervisedTrainingFunction () |
Protected Member Functions inherited from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType > | |
TrainingFunctionBase () | |
~TrainingFunctionBase () | |
Protected Member Functions inherited from itk::LightProcessObject | |
LightProcessObject () | |
~LightProcessObject () | |
virtual void | GenerateData () |
Protected Member Functions inherited from itk::Object | |
Object () | |
bool | PrintObservers (std::ostream &os, Indent indent) const |
virtual void | SetTimeStamp (const TimeStamp &time) |
virtual | ~Object () |
Protected Member Functions inherited from itk::LightObject | |
virtual LightObject::Pointer | InternalClone () const |
LightObject () | |
virtual void | PrintHeader (std::ostream &os, Indent indent) const |
virtual void | PrintTrailer (std::ostream &os, Indent indent) const |
virtual | ~LightObject () |
Protected Attributes | |
bool | m_Stop |
ScalarType | m_Threshold |
Protected Attributes inherited from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType > | |
InputSampleVectorType | m_InputSamples |
SizeValueType | m_Iterations |
ValueType | m_LearningRate |
PerformanceFunctionType::Pointer | m_PerformanceFunction |
TTargetVector * | m_SampleTargets |
OutputSampleVectorType | m_Targets |
TSample * | m_TrainingSamples |
This is the itkIterativeSupervisedTrainingFunction class.
Definition at line 34 of file itkIterativeSupervisedTrainingFunction.h.
typedef SmartPointer<const Self> itk::Statistics::IterativeSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::ConstPointer |
Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.
Definition at line 41 of file itkIterativeSupervisedTrainingFunction.h.
typedef Superclass::InternalVectorType itk::Statistics::IterativeSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::InternalVectorType |
Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.
Definition at line 50 of file itkIterativeSupervisedTrainingFunction.h.
typedef Superclass::NetworkType itk::Statistics::IterativeSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::NetworkType |
Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.
Definition at line 47 of file itkIterativeSupervisedTrainingFunction.h.
typedef SmartPointer<Self> itk::Statistics::IterativeSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::Pointer |
Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.
Definition at line 40 of file itkIterativeSupervisedTrainingFunction.h.
typedef IterativeSupervisedTrainingFunction itk::Statistics::IterativeSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::Self |
Standard class typedefs.
Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.
Definition at line 38 of file itkIterativeSupervisedTrainingFunction.h.
typedef TrainingFunctionBase<TSample, TTargetVector, ScalarType> itk::Statistics::IterativeSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::Superclass |
Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.
Definition at line 39 of file itkIterativeSupervisedTrainingFunction.h.
|
protected |
|
inlineprotectedvirtual |
Definition at line 61 of file itkIterativeSupervisedTrainingFunction.h.
|
virtual |
Create an object from an instance, potentially deferring to a factory. This method allows you to create an instance of an object that is exactly the same type as the referring object. This is useful in cases where an object has been cast back to a base class.
Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.
|
virtual |
Method for creation through the object factory.
Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.
|
static |
Method for creation through the object factory.
Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.
|
protectedvirtual |
Method to print the object.
Reimplemented from itk::Statistics::TrainingFunctionBase< TSample, TTargetVector, ScalarType >.
void itk::Statistics::IterativeSupervisedTrainingFunction< TSample, TTargetVector, ScalarType >::SetNumOfIterations | ( | SizeValueType | i | ) |
|
virtual |
|
virtual |
|
protected |
Definition at line 67 of file itkIterativeSupervisedTrainingFunction.h.
|
protected |
Definition at line 66 of file itkIterativeSupervisedTrainingFunction.h.