ITK  4.2.0
Insight Segmentation and Registration Toolkit
Public Types | Public Member Functions | Static Public Member Functions | Protected Member Functions | Protected Attributes
itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer > Class Template Reference

#include <itkMultilayerNeuralNetworkBase.h>

+ Inheritance diagram for itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >:
+ Collaboration diagram for itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >:

List of all members.

Public Types

typedef SmartPointer< const SelfConstPointer
typedef InputFunctionBase
< ValueType *, ValueType
InputFunctionInterfaceType
typedef
Superclass::LayerInterfaceType 
LayerInterfaceType
typedef std::vector< typename
LayerInterfaceType::Pointer > 
LayerVectorType
typedef LearningFunctionBase
< typename
TLearningLayer::LayerInterfaceType,
TTargetVector > 
LearningFunctionInterfaceType
typedef TLearningLayer LearningLayerType
typedef
Superclass::MeasurementVectorType 
MeasurementVectorType
typedef
Superclass::NetworkOutputType 
NetworkOutputType
typedef SmartPointer< SelfPointer
typedef MultilayerNeuralNetworkBase Self
typedef NeuralNetworkObject
< TMeasurementVector,
TTargetVector > 
Superclass
typedef
Superclass::TargetVectorType 
TargetVectorType
typedef TransferFunctionBase
< ValueType
TransferFunctionInterfaceType
typedef Superclass::ValueType ValueType
typedef std::vector< typename
LayerInterfaceType::WeightSetInterfaceType::Pointer > 
WeightVectorType
- Public Types inherited from itk::Statistics::NeuralNetworkObject< TMeasurementVector, TTargetVector >
- Public Types inherited from itk::DataObject
typedef std::string DataObjectIdentifierType
typedef std::vector< Pointer >
::size_type 
DataObjectPointerArraySizeType
- Public Types inherited from itk::Object
- Public Types inherited from itk::LightObject

Public Member Functions

void AddLayer (LayerInterfaceType *)
void AddWeightSet (typename LayerInterfaceType::WeightSetInterfaceType *)
virtual void BackwardPropagate (NetworkOutputType errors)
virtual ::itk::LightObject::Pointer CreateAnother (void) const
virtual NetworkOutputType GenerateOutput (TMeasurementVector samplevector)
LayerInterfaceTypeGetLayer (int layer_id)
const LayerInterfaceTypeGetLayer (int layer_id) const
virtual const char * GetNameOfClass () const
int GetNumOfLayers (void) const
int GetNumOfWeightSets (void) const
LayerInterfaceType::WeightSetInterfaceType * GetWeightSet (unsigned int id)
void InitializeWeights ()
void SetLearningFunction (LearningFunctionInterfaceType *f)
void SetLearningRate (ValueType learningrate)
void SetLearningRule (LearningFunctionInterfaceType *)
virtual void UpdateWeights (ValueType)
- Public Member Functions inherited from itk::Statistics::NeuralNetworkObject< TMeasurementVector, TTargetVector >
virtual void BackwardPropagate (NetworkOutputType errors)=0
- Public Member Functions inherited from itk::DataObject
virtual void CopyInformation (const DataObject *)
virtual void DataHasBeenGenerated ()
void DisconnectPipeline ()
bool GetDataReleased () const
virtual const bool & GetReleaseDataFlag ()
SmartPointerForwardReference
< ProcessObject
GetSource () const
DataObjectPointerArraySizeType GetSourceOutputIndex () const
const DataObjectIdentifierTypeGetSourceOutputName () const
virtual unsigned long GetUpdateMTime () const
virtual void Initialize ()
virtual void PrepareForNewData ()
virtual void PropagateRequestedRegion ()
void ReleaseData ()
virtual void ReleaseDataFlagOff ()
virtual void ReleaseDataFlagOn ()
virtual bool RequestedRegionIsOutsideOfTheBufferedRegion ()
virtual void ResetPipeline ()
void SetReleaseDataFlag (bool flag)
virtual void SetRequestedRegion (const DataObject *)
virtual void SetRequestedRegionToLargestPossibleRegion ()
bool ShouldIReleaseData () const
virtual void Update ()
virtual void UpdateOutputData ()
virtual void UpdateOutputInformation ()
virtual bool VerifyRequestedRegion ()
void SetPipelineMTime (unsigned long time)
virtual const unsigned long & GetPipelineMTime ()
virtual void SetRealTimeStamp (RealTimeStamp _arg)
virtual const RealTimeStampGetRealTimeStamp ()
virtual void Graft (const DataObject *)
- Public Member Functions inherited from itk::Object
unsigned long AddObserver (const EventObject &event, Command *)
unsigned long AddObserver (const EventObject &event, Command *) const
virtual void DebugOff () const
virtual void DebugOn () const
CommandGetCommand (unsigned long tag)
bool GetDebug () const
MetaDataDictionaryGetMetaDataDictionary (void)
const MetaDataDictionaryGetMetaDataDictionary (void) const
virtual unsigned long GetMTime () const
virtual const TimeStampGetTimeStamp () const
bool HasObserver (const EventObject &event) const
void InvokeEvent (const EventObject &)
void InvokeEvent (const EventObject &) const
virtual void Modified () const
virtual void Register () const
void RemoveAllObservers ()
void RemoveObserver (unsigned long tag)
void SetDebug (bool debugFlag) const
void SetMetaDataDictionary (const MetaDataDictionary &rhs)
virtual void SetReferenceCount (int)
virtual void UnRegister () const
- Public Member Functions inherited from itk::LightObject
virtual void Delete ()
virtual int GetReferenceCount () const
 itkCloneMacro (Self)
void Print (std::ostream &os, Indent indent=0) const

Static Public Member Functions

static Pointer New ()

Protected Member Functions

 MultilayerNeuralNetworkBase ()
virtual void PrintSelf (std::ostream &os, Indent indent) const
 ~MultilayerNeuralNetworkBase ()
- Protected Member Functions inherited from itk::Statistics::NeuralNetworkObject< TMeasurementVector, TTargetVector >
 NeuralNetworkObject ()
virtual ~NeuralNetworkObject ()
- Protected Member Functions inherited from itk::DataObject
virtual void PropagateResetPipeline ()
 DataObject ()
 ~DataObject ()
- Protected Member Functions inherited from itk::Object
 Object ()
bool PrintObservers (std::ostream &os, Indent indent) const
virtual void SetTimeStamp (const TimeStamp &time)
virtual ~Object ()
- Protected Member Functions inherited from itk::LightObject
virtual LightObject::Pointer InternalClone () const
 LightObject ()
virtual void PrintHeader (std::ostream &os, Indent indent) const
virtual void PrintTrailer (std::ostream &os, Indent indent) const
virtual ~LightObject ()

Protected Attributes

LayerVectorType m_Layers
LearningFunctionInterfaceType::Pointer m_LearningFunction
ValueType m_LearningRate
WeightVectorType m_Weights
- Protected Attributes inherited from itk::Statistics::NeuralNetworkObject< TMeasurementVector, TTargetVector >

Detailed Description

template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
class itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >

This is the itkMultilayerNeuralNetworkBase class.

Definition at line 34 of file itkMultilayerNeuralNetworkBase.h.


Member Typedef Documentation

template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
typedef SmartPointer<const Self> itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::ConstPointer
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
typedef InputFunctionBase<ValueType*, ValueType> itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::InputFunctionInterfaceType
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
typedef Superclass::LayerInterfaceType itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::LayerInterfaceType
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
typedef std::vector<typename LayerInterfaceType::Pointer> itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::LayerVectorType
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
typedef LearningFunctionBase<typename TLearningLayer::LayerInterfaceType, TTargetVector> itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::LearningFunctionInterfaceType

Definition at line 58 of file itkMultilayerNeuralNetworkBase.h.

template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
typedef TLearningLayer itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::LearningLayerType
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
typedef Superclass::MeasurementVectorType itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::MeasurementVectorType
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
typedef Superclass::NetworkOutputType itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::NetworkOutputType
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
typedef SmartPointer<Self> itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::Pointer
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
typedef MultilayerNeuralNetworkBase itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::Self
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
typedef NeuralNetworkObject<TMeasurementVector, TTargetVector> itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::Superclass
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
typedef Superclass::TargetVectorType itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::TargetVectorType
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
typedef TransferFunctionBase<ValueType> itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::TransferFunctionInterfaceType
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
typedef Superclass::ValueType itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::ValueType
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
typedef std::vector<typename LayerInterfaceType::WeightSetInterfaceType::Pointer> itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::WeightVectorType

Constructor & Destructor Documentation

template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::MultilayerNeuralNetworkBase ( )
protected
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::~MultilayerNeuralNetworkBase ( )
protected

Member Function Documentation

template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
void itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::AddLayer ( LayerInterfaceType )
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
void itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::AddWeightSet ( typename LayerInterfaceType::WeightSetInterfaceType *  )
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
virtual void itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::BackwardPropagate ( NetworkOutputType  errors)
virtual
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
virtual::itk::LightObject::Pointer itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::CreateAnother ( void  ) const
virtual

Create an object from an instance, potentially deferring to a factory. This method allows you to create an instance of an object that is exactly the same type as the referring object. This is useful in cases where an object has been cast back to a base class.

Reimplemented from itk::Object.

Reimplemented in itk::Statistics::RBFNetwork< TMeasurementVector, TTargetVector >, itk::Statistics::OneHiddenLayerBackPropagationNeuralNetwork< TMeasurementVector, TTargetVector >, and itk::Statistics::TwoHiddenLayerBackPropagationNeuralNetwork< TMeasurementVector, TTargetVector >.

template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
virtual NetworkOutputType itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::GenerateOutput ( TMeasurementVector  samplevector)
virtual
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
LayerInterfaceType* itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::GetLayer ( int  layer_id)
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
const LayerInterfaceType* itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::GetLayer ( int  layer_id) const
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
virtual const char* itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::GetNameOfClass ( ) const
virtual
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
int itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::GetNumOfLayers ( void  ) const
inline

Definition at line 76 of file itkMultilayerNeuralNetworkBase.h.

template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
int itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::GetNumOfWeightSets ( void  ) const
inline

Definition at line 80 of file itkMultilayerNeuralNetworkBase.h.

template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
LayerInterfaceType::WeightSetInterfaceType* itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::GetWeightSet ( unsigned int  id)
inline

Definition at line 92 of file itkMultilayerNeuralNetworkBase.h.

template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
void itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::InitializeWeights ( )
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
static Pointer itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::New ( )
static
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
virtual void itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::PrintSelf ( std::ostream &  os,
Indent  indent 
) const
protectedvirtual
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
void itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::SetLearningFunction ( LearningFunctionInterfaceType f)
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
void itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::SetLearningRate ( ValueType  learningrate)
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
void itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::SetLearningRule ( LearningFunctionInterfaceType )
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
virtual void itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::UpdateWeights ( ValueType  )
virtual

Member Data Documentation

template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
LayerVectorType itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::m_Layers
protected
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
LearningFunctionInterfaceType::Pointer itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::m_LearningFunction
protected

Definition at line 119 of file itkMultilayerNeuralNetworkBase.h.

template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
ValueType itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::m_LearningRate
protected
template<class TMeasurementVector, class TTargetVector, class TLearningLayer = LayerBase<TMeasurementVector, TTargetVector>>
WeightVectorType itk::Statistics::MultilayerNeuralNetworkBase< TMeasurementVector, TTargetVector, TLearningLayer >::m_Weights
protected

The documentation for this class was generated from the following file: