ITK  5.2.0
Insight Toolkit
SphinxExamples/src/Core/Transform/MutualInformationAffine/Code.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
constexpr unsigned int Dimension = 2;
using PixelType = unsigned char;
int
main(int argc, char * argv[])
{
using ReaderType = itk::ImageFileReader<ImageType>;
if (argc < 4)
{
std::cout << "Usage: " << argv[0] << " imageFile1 imageFile2 outputFile" << std::endl;
return EXIT_FAILURE;
}
ReaderType::Pointer fixedReader = ReaderType::New();
fixedReader->SetFileName(argv[1]);
fixedReader->Update();
ImageType::Pointer fixedImage = fixedReader->GetOutput();
ReaderType::Pointer movingReader = ReaderType::New();
movingReader->SetFileName(argv[2]);
movingReader->Update();
ImageType::Pointer movingImage = movingReader->GetOutput();
// We use floats internally
using InternalImageType = itk::Image<float, Dimension>;
// Normalize the images
NormalizeFilterType::Pointer fixedNormalizer = NormalizeFilterType::New();
NormalizeFilterType::Pointer movingNormalizer = NormalizeFilterType::New();
fixedNormalizer->SetInput(fixedImage);
movingNormalizer->SetInput(movingImage);
// Smooth the normalized images
GaussianFilterType::Pointer fixedSmoother = GaussianFilterType::New();
GaussianFilterType::Pointer movingSmoother = GaussianFilterType::New();
fixedSmoother->SetVariance(2.0);
movingSmoother->SetVariance(2.0);
fixedSmoother->SetInput(fixedNormalizer->GetOutput());
movingSmoother->SetInput(movingNormalizer->GetOutput());
using OptimizerType = itk::GradientDescentOptimizer;
TransformType::Pointer transform = TransformType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();
RegistrationType::Pointer registration = RegistrationType::New();
registration->SetOptimizer(optimizer);
registration->SetTransform(transform);
registration->SetInterpolator(interpolator);
MetricType::Pointer metric = MetricType::New();
registration->SetMetric(metric);
// The metric requires a number of parameters to be selected, including
// the standard deviation of the Gaussian kernel for the fixed image
// density estimate, the standard deviation of the kernel for the moving
// image density and the number of samples use to compute the densities
// and entropy values. Details on the concepts behind the computation of
// the metric can be found in Section
// \ref{sec:MutualInformationMetric}. Experience has
// shown that a kernel standard deviation of $0.4$ works well for images
// which have been normalized to a mean of zero and unit variance. We
// will follow this empirical rule in this example.
metric->SetFixedImageStandardDeviation(5.0);
metric->SetMovingImageStandardDeviation(5.0);
registration->SetFixedImage(fixedSmoother->GetOutput());
registration->SetMovingImage(movingSmoother->GetOutput());
fixedNormalizer->Update();
ImageType::RegionType fixedImageRegion = fixedNormalizer->GetOutput()->GetBufferedRegion();
registration->SetFixedImageRegion(fixedImageRegion);
using ParametersType = RegistrationType::ParametersType;
ParametersType initialParameters(transform->GetNumberOfParameters());
// rotation matrix (identity)
initialParameters[0] = 1.0; // R(0,0)
initialParameters[1] = 0.0; // R(0,1)
initialParameters[2] = 0.0; // R(1,0)
initialParameters[3] = 1.0; // R(1,1)
// translation vector
initialParameters[4] = 0.0;
initialParameters[5] = 0.0;
registration->SetInitialTransformParameters(initialParameters);
// Software Guide : BeginLatex
//
// We should now define the number of spatial samples to be considered in
// the metric computation. Note that we were forced to postpone this setting
// until we had done the preprocessing of the images because the number of
// samples is usually defined as a fraction of the total number of pixels in
// the fixed image.
//
// The number of spatial samples can usually be as low as $1\%$ of the total
// number of pixels in the fixed image. Increasing the number of samples
// improves the smoothness of the metric from one iteration to another and
// therefore helps when this metric is used in conjunction with optimizers
// that rely of the continuity of the metric values. The trade-off, of
// course, is that a larger number of samples result in longer computation
// times per every evaluation of the metric.
//
// It has been demonstrated empirically that the number of samples is not a
// critical parameter for the registration process. When you start fine
// tuning your own registration process, you should start using high values
// of number of samples, for example in the range of $20\%$ to $50\%$ of the
// number of pixels in the fixed image. Once you have succeeded to register
// your images you can then reduce the number of samples progressively until
// you find a good compromise on the time it takes to compute one evaluation
// of the Metric. Note that it is not useful to have very fast evaluations
// of the Metric if the noise in their values results in more iterations
// being required by the optimizer to converge. You must then study the
// behavior of the metric values as the iterations progress.
const unsigned int numberOfPixels = fixedImageRegion.GetNumberOfPixels();
const auto numberOfSamples = static_cast<unsigned int>(numberOfPixels * 0.01);
metric->SetNumberOfSpatialSamples(numberOfSamples);
// For consistent results when regression testing.
metric->ReinitializeSeed(121212);
// Note that large values of the learning rate will make the optimizer
// unstable. Small values, on the other hand, may result in the optimizer
// needing too many iterations in order to walk to the extrema of the cost
// function. The easy way of fine tuning this parameter is to start with
// small values, probably in the range of $\{5.0,10.0\}$. Once the other
// registration parameters have been tuned for producing convergence, you
// may want to revisit the learning rate and start increasing its value until
// you observe that the optimization becomes unstable. The ideal value for
// this parameter is the one that results in a minimum number of iterations
// while still keeping a stable path on the parametric space of the
// optimization. Keep in mind that this parameter is a multiplicative factor
// applied on the gradient of the Metric. Therefore, its effect on the
// optimizer step length is proportional to the Metric values themselves.
// Metrics with large values will require you to use smaller values for the
// learning rate in order to maintain a similar optimizer behavior.
optimizer->SetLearningRate(1.0);
// Note that the only stop condition for the v3 GradientDescentOptimizer class
// is that the maximum number of iterations is reached.
// For the option to exit early on convergence use GradientDescentOptimizerv4
// with an accompanying v4 metric class.
optimizer->SetNumberOfIterations(200);
optimizer->MaximizeOn(); // We want to maximize mutual information (the default of the optimizer is to minimize)
auto scales = optimizer->GetScales();
// Let optimizer take
// large steps along translation parameters,
// moderate steps along rotational parameters,
// and small steps along scale parameters
scales.SetSize(6);
scales.SetElement(0, 100);
scales.SetElement(1, 0.5);
scales.SetElement(2, 0.5);
scales.SetElement(3, 100);
scales.SetElement(4, 0.0001);
scales.SetElement(5, 0.0001);
optimizer->SetScales(scales);
try
{
registration->Update();
std::cout << "Optimizer stop condition: " << registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch (itk::ExceptionObject & err)
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return EXIT_FAILURE;
}
ParametersType finalParameters = registration->GetLastTransformParameters();
std::cout << "Final Parameters: " << finalParameters << std::endl;
unsigned int numberOfIterations = optimizer->GetCurrentIteration();
double bestValue = optimizer->GetValue();
// Print out results
std::cout << std::endl;
std::cout << "Result = " << std::endl;
std::cout << " Iterations = " << numberOfIterations << std::endl;
std::cout << " Metric value = " << bestValue << std::endl;
std::cout << " Numb. Samples = " << numberOfSamples << std::endl;
TransformType::Pointer finalTransform = TransformType::New();
finalTransform->SetParameters(finalParameters);
finalTransform->SetFixedParameters(transform->GetFixedParameters());
ResampleFilterType::Pointer resample = ResampleFilterType::New();
resample->SetTransform(finalTransform);
resample->SetInput(movingImage);
resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize());
resample->SetOutputOrigin(fixedImage->GetOrigin());
resample->SetOutputSpacing(fixedImage->GetSpacing());
resample->SetOutputDirection(fixedImage->GetDirection());
resample->SetDefaultPixelValue(100);
using WriterType = itk::ImageFileWriter<ImageType>;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName(argv[3]);
writer->SetInput(resample->GetOutput());
writer->Update();
return EXIT_SUCCESS;
}
itk::DiscreteGaussianImageFilter
Blurs an image by separable convolution with discrete gaussian kernels. This filter performs Gaussian...
Definition: itkDiscreteGaussianImageFilter.h:63
itkEllipseSpatialObject.h
itkImageFileReader.h
itk::ImageRegistrationMethod
Base class for Image Registration Methods.
Definition: itkImageRegistrationMethod.h:70
itkCastImageFilter.h
itkAffineTransform.h
itk::AffineTransform
Definition: itkAffineTransform.h:101
itkNormalizeImageFilter.h
itk::MutualInformationImageToImageMetric
Computes the mutual information between two images to be registered.
Definition: itkMutualInformationImageToImageMetric.h:94
itk::ImageFileReader
Data source that reads image data from a single file.
Definition: itkImageFileReader.h:75
itkMutualInformationImageToImageMetric.h
itk::LinearInterpolateImageFunction
Linearly interpolate an image at specified positions.
Definition: itkLinearInterpolateImageFunction.h:50
itk::GradientDescentOptimizer
Implement a gradient descent optimizer.
Definition: itkGradientDescentOptimizer.h:72
itkCheckerBoardImageFilter.h
itk::ImageFileWriter
Writes image data to a single file.
Definition: itkImageFileWriter.h:88
itk::NormalizeImageFilter
Normalize an image by setting its mean to zero and variance to one.
Definition: itkNormalizeImageFilter.h:54
itkSpatialObjectToImageFilter.h
itk::GTest::TypedefsAndConstructors::Dimension2::RegionType
ImageBaseType::RegionType RegionType
Definition: itkGTestTypedefsAndConstructors.h:54
itkImageRegistrationMethod.h
itkImageFileWriter.h
itk::ResampleImageFilter
Resample an image via a coordinate transform.
Definition: itkResampleImageFilter.h:90
itkGradientDescentOptimizer.h
itk::Image
Templated n-dimensional image class.
Definition: itkImage.h:86
itk::ImageRegion::GetNumberOfPixels
SizeValueType GetNumberOfPixels() const
itkResampleImageFilter.h
itk::GTest::TypedefsAndConstructors::Dimension2::Dimension
constexpr unsigned int Dimension
Definition: itkGTestTypedefsAndConstructors.h:44
itkDiscreteGaussianImageFilter.h