ITK  5.2.0
Insight Toolkit
Public Types | Public Member Functions | Static Public Member Functions | List of all members

#include <itkGradientDescentOptimizer.h>

+ Inheritance diagram for itk::GradientDescentOptimizer:
+ Collaboration diagram for itk::GradientDescentOptimizer:

Public Types

using ConstPointer = SmartPointer< const Self >
 
using Pointer = SmartPointer< Self >
 
using Self = GradientDescentOptimizer
 
using StopConditionGradientDescentOptimizerEnum = GradientDescentOptimizerEnums::StopConditionGradientDescentOptimizer
 
using Superclass = SingleValuedNonLinearOptimizer
 
- Public Types inherited from itk::SingleValuedNonLinearOptimizer
using ConstPointer = SmartPointer< const Self >
 
using CostFunctionPointer = CostFunctionType::Pointer
 
using CostFunctionType = SingleValuedCostFunction
 
using DerivativeType = CostFunctionType::DerivativeType
 
using MeasureType = CostFunctionType::MeasureType
 
using ParametersType = Superclass::ParametersType
 
using Pointer = SmartPointer< Self >
 
using Self = SingleValuedNonLinearOptimizer
 
using Superclass = NonLinearOptimizer
 
- Public Types inherited from itk::NonLinearOptimizer
using ConstPointer = SmartPointer< const Self >
 
using ParametersType = Superclass::ParametersType
 
using Pointer = SmartPointer< Self >
 
using ScalesType = Superclass::ScalesType
 
using Self = NonLinearOptimizer
 
using Superclass = Optimizer
 
- Public Types inherited from itk::Optimizer
using ConstPointer = SmartPointer< const Self >
 
using ParametersType = OptimizerParameters< double >
 
using Pointer = SmartPointer< Self >
 
using ScalesType = Array< double >
 
using Self = Optimizer
 
using Superclass = Object
 
- Public Types inherited from itk::Object
using ConstPointer = SmartPointer< const Self >
 
using Pointer = SmartPointer< Self >
 
using Self = Object
 
using Superclass = LightObject
 
- Public Types inherited from itk::LightObject
using ConstPointer = SmartPointer< const Self >
 
using Pointer = SmartPointer< Self >
 
using Self = LightObject
 

Public Member Functions

virtual ::itk::LightObject::Pointer CreateAnother () const
 
virtual const char * GetNameOfClass () const
 
- Public Member Functions inherited from itk::SingleValuedNonLinearOptimizer
virtual ::itk::LightObject::Pointer CreateAnother () const
 
virtual const CostFunctionTypeGetCostFunction () const
 
virtual CostFunctionTypeGetModifiableCostFunction ()
 
MeasureType GetValue (const ParametersType &parameters) const
 
virtual void SetCostFunction (CostFunctionType *costFunction)
 
- Public Member Functions inherited from itk::Optimizer
virtual const ParametersTypeGetInitialPosition () const
 
virtual void SetInitialPosition (const ParametersType &param)
 
void SetScales (const ScalesType &scales)
 
virtual const ScalesTypeGetScales () const
 
virtual const ScalesTypeGetInverseScales () const
 
virtual const ParametersTypeGetCurrentPosition () const
 
- Public Member Functions inherited from itk::Object
unsigned long AddObserver (const EventObject &event, Command *)
 
unsigned long AddObserver (const EventObject &event, Command *) const
 
unsigned long AddObserver (const EventObject &event, std::function< void(const EventObject &)> function) const
 
virtual void DebugOff () const
 
virtual void DebugOn () const
 
CommandGetCommand (unsigned long tag)
 
bool GetDebug () const
 
MetaDataDictionaryGetMetaDataDictionary ()
 
const MetaDataDictionaryGetMetaDataDictionary () const
 
virtual ModifiedTimeType GetMTime () const
 
virtual const TimeStampGetTimeStamp () const
 
bool HasObserver (const EventObject &event) const
 
void InvokeEvent (const EventObject &)
 
void InvokeEvent (const EventObject &) const
 
virtual void Modified () const
 
void Register () const override
 
void RemoveAllObservers ()
 
void RemoveObserver (unsigned long tag)
 
void SetDebug (bool debugFlag) const
 
void SetReferenceCount (int) override
 
void UnRegister () const noexcept override
 
void SetMetaDataDictionary (const MetaDataDictionary &rhs)
 
void SetMetaDataDictionary (MetaDataDictionary &&rrhs)
 
virtual void SetObjectName (std::string _arg)
 
virtual const std::string & GetObjectName () const
 
- Public Member Functions inherited from itk::LightObject
Pointer Clone () const
 
virtual void Delete ()
 
virtual int GetReferenceCount () const
 
void Print (std::ostream &os, Indent indent=0) const
 

Static Public Member Functions

static Pointer New ()
 
- Static Public Member Functions inherited from itk::SingleValuedNonLinearOptimizer
static Pointer New ()
 
- Static Public Member Functions inherited from itk::NonLinearOptimizer
static Pointer New ()
 
- Static Public Member Functions inherited from itk::Optimizer
static Pointer New ()
 
- Static Public Member Functions inherited from itk::Object
static bool GetGlobalWarningDisplay ()
 
static void GlobalWarningDisplayOff ()
 
static void GlobalWarningDisplayOn ()
 
static Pointer New ()
 
static void SetGlobalWarningDisplay (bool val)
 
- Static Public Member Functions inherited from itk::LightObject
static void BreakOnError ()
 
static Pointer New ()
 
DerivativeType m_Gradient
 
bool m_Maximize { false }
 
double m_LearningRate { 1.0 }
 
bool m_Stop { false }
 
double m_Value { 0.0 }
 
StopConditionGradientDescentOptimizerEnum m_StopCondition
 
SizeValueType m_NumberOfIterations { 100 }
 
SizeValueType m_CurrentIteration { 0 }
 
std::ostringstream m_StopConditionDescription
 
virtual const bool & GetMaximize () const
 
virtual void SetMaximize (bool _arg)
 
virtual void MaximizeOn ()
 
virtual void MaximizeOff ()
 
bool GetMinimize () const
 
void SetMinimize (bool v)
 
void MinimizeOn ()
 
void MinimizeOff ()
 
virtual void AdvanceOneStep ()
 
void StartOptimization () override
 
void ResumeOptimization ()
 
void StopOptimization ()
 
virtual void SetLearningRate (double _arg)
 
virtual const double & GetLearningRate () const
 
virtual void SetNumberOfIterations (SizeValueType _arg)
 
virtual const SizeValueTypeGetNumberOfIterations () const
 
virtual SizeValueType GetCurrentIteration () const
 
virtual const double & GetValue () const
 
virtual const StopConditionGradientDescentOptimizerEnumGetStopCondition () const
 
const std::string GetStopConditionDescription () const override
 
virtual const DerivativeTypeGetGradient () const
 
 GradientDescentOptimizer ()
 
 ~GradientDescentOptimizer () override=default
 
void PrintSelf (std::ostream &os, Indent indent) const override
 

Additional Inherited Members

- Protected Member Functions inherited from itk::SingleValuedNonLinearOptimizer
void PrintSelf (std::ostream &os, Indent indent) const override
 
 SingleValuedNonLinearOptimizer ()
 
 ~SingleValuedNonLinearOptimizer () override=default
 
- Protected Member Functions inherited from itk::NonLinearOptimizer
 NonLinearOptimizer ()=default
 
 ~NonLinearOptimizer () override
 
- Protected Member Functions inherited from itk::Optimizer
 Optimizer ()
 
 ~Optimizer () override=default
 
virtual void SetCurrentPosition (const ParametersType &param)
 
- Protected Member Functions inherited from itk::Object
 Object ()
 
 ~Object () override
 
bool PrintObservers (std::ostream &os, Indent indent) const
 
virtual void SetTimeStamp (const TimeStamp &timeStamp)
 
- Protected Member Functions inherited from itk::LightObject
virtual LightObject::Pointer InternalClone () const
 
 LightObject ()
 
virtual void PrintHeader (std::ostream &os, Indent indent) const
 
virtual void PrintTrailer (std::ostream &os, Indent indent) const
 
virtual ~LightObject ()
 
- Protected Attributes inherited from itk::SingleValuedNonLinearOptimizer
CostFunctionPointer m_CostFunction
 
- Protected Attributes inherited from itk::Optimizer
bool m_ScalesInitialized { false }
 
ParametersType m_CurrentPosition
 
- Protected Attributes inherited from itk::LightObject
std::atomic< int > m_ReferenceCount
 

Detailed Description

Implement a gradient descent optimizer.

GradientDescentOptimizer implements a simple gradient descent optimizer. At each iteration the current position is updated according to

\[ p_{n+1} = p_n + \mbox{learningRate} \, \frac{\partial f(p_n) }{\partial p_n} \]

The learning rate is a fixed scalar defined via SetLearningRate(). The optimizer steps through a user defined number of iterations; no convergence checking is done.

Additionally, user can scale each component, $ \partial f / \partial p $, by setting a scaling vector using method SetScale().

See also
RegularStepGradientDescentOptimizer
Examples
Examples/RegistrationITKv4/ImageRegistration2.cxx, SphinxExamples/src/Core/Transform/MutualInformationAffine/Code.cxx, SphinxExamples/src/Registration/Common/MutualInformation/Code.cxx, and SphinxExamples/src/Registration/Common/PerformMultiModalityRegistrationWithMutualInformation/Code.cxx.

Definition at line 72 of file itkGradientDescentOptimizer.h.

Member Typedef Documentation

◆ ConstPointer

Definition at line 81 of file itkGradientDescentOptimizer.h.

◆ Pointer

Definition at line 80 of file itkGradientDescentOptimizer.h.

◆ Self

Standard class type aliases.

Definition at line 78 of file itkGradientDescentOptimizer.h.

◆ StopConditionGradientDescentOptimizerEnum

Definition at line 90 of file itkGradientDescentOptimizer.h.

◆ Superclass

Definition at line 79 of file itkGradientDescentOptimizer.h.

Constructor & Destructor Documentation

◆ GradientDescentOptimizer()

itk::GradientDescentOptimizer::GradientDescentOptimizer ( )
protected

Methods to configure the cost function.

◆ ~GradientDescentOptimizer()

itk::GradientDescentOptimizer::~GradientDescentOptimizer ( )
overrideprotecteddefault

Methods to configure the cost function.

Member Function Documentation

◆ AdvanceOneStep()

virtual void itk::GradientDescentOptimizer::AdvanceOneStep ( )
virtual

Advance one step following the gradient direction.

Reimplemented in itk::QuaternionRigidTransformGradientDescentOptimizer.

◆ CreateAnother()

virtual::itk::LightObject::Pointer itk::GradientDescentOptimizer::CreateAnother ( ) const
virtual

Create an object from an instance, potentially deferring to a factory. This method allows you to create an instance of an object that is exactly the same type as the referring object. This is useful in cases where an object has been cast back to a base class.

Reimplemented from itk::Object.

Reimplemented in itk::QuaternionRigidTransformGradientDescentOptimizer.

◆ GetCurrentIteration()

virtual SizeValueType itk::GradientDescentOptimizer::GetCurrentIteration ( ) const
virtual

Get the current iteration number.

◆ GetGradient()

virtual const DerivativeType& itk::GradientDescentOptimizer::GetGradient ( ) const
virtual

Get Gradient condition.

◆ GetLearningRate()

virtual const double& itk::GradientDescentOptimizer::GetLearningRate ( ) const
virtual

Get the learning rate.

◆ GetMaximize()

virtual const bool& itk::GradientDescentOptimizer::GetMaximize ( ) const
virtual

Methods to configure the cost function.

◆ GetMinimize()

bool itk::GradientDescentOptimizer::GetMinimize ( ) const
inline

Methods to configure the cost function.

Definition at line 105 of file itkGradientDescentOptimizer.h.

◆ GetNameOfClass()

virtual const char* itk::GradientDescentOptimizer::GetNameOfClass ( ) const
virtual

Run-time type information (and related methods).

Reimplemented from itk::SingleValuedNonLinearOptimizer.

Reimplemented in itk::QuaternionRigidTransformGradientDescentOptimizer.

◆ GetNumberOfIterations()

virtual const SizeValueType& itk::GradientDescentOptimizer::GetNumberOfIterations ( ) const
virtual

Get the number of iterations.

◆ GetStopCondition()

virtual const StopConditionGradientDescentOptimizerEnum& itk::GradientDescentOptimizer::GetStopCondition ( ) const
virtual

Get Stop condition.

◆ GetStopConditionDescription()

const std::string itk::GradientDescentOptimizer::GetStopConditionDescription ( ) const
overridevirtual

Methods to configure the cost function.

Reimplemented from itk::Optimizer.

◆ GetValue()

virtual const double& itk::GradientDescentOptimizer::GetValue ( ) const
virtual

Get the current value.

◆ MaximizeOff()

virtual void itk::GradientDescentOptimizer::MaximizeOff ( )
virtual

Methods to configure the cost function.

◆ MaximizeOn()

virtual void itk::GradientDescentOptimizer::MaximizeOn ( )
virtual

Methods to configure the cost function.

◆ MinimizeOff()

void itk::GradientDescentOptimizer::MinimizeOff ( )
inline

Methods to configure the cost function.

Definition at line 120 of file itkGradientDescentOptimizer.h.

◆ MinimizeOn()

void itk::GradientDescentOptimizer::MinimizeOn ( )
inline

Methods to configure the cost function.

Definition at line 115 of file itkGradientDescentOptimizer.h.

◆ New()

static Pointer itk::GradientDescentOptimizer::New ( )
static

Method for creation through the object factory.

◆ PrintSelf()

void itk::GradientDescentOptimizer::PrintSelf ( std::ostream &  os,
Indent  indent 
) const
overrideprotectedvirtual

Methods to configure the cost function.

Reimplemented from itk::Object.

◆ ResumeOptimization()

void itk::GradientDescentOptimizer::ResumeOptimization ( )

Resume previously stopped optimization with current parameters

See also
StopOptimization.

◆ SetLearningRate()

virtual void itk::GradientDescentOptimizer::SetLearningRate ( double  _arg)
virtual

Set the learning rate.

◆ SetMaximize()

virtual void itk::GradientDescentOptimizer::SetMaximize ( bool  _arg)
virtual

Methods to configure the cost function.

◆ SetMinimize()

void itk::GradientDescentOptimizer::SetMinimize ( bool  v)
inline

Methods to configure the cost function.

Definition at line 110 of file itkGradientDescentOptimizer.h.

◆ SetNumberOfIterations()

virtual void itk::GradientDescentOptimizer::SetNumberOfIterations ( SizeValueType  _arg)
virtual

Set the number of iterations.

◆ StartOptimization()

void itk::GradientDescentOptimizer::StartOptimization ( )
overridevirtual

Start optimization.

Reimplemented from itk::Optimizer.

◆ StopOptimization()

void itk::GradientDescentOptimizer::StopOptimization ( )

Stop optimization.

See also
ResumeOptimization

Member Data Documentation

◆ m_CurrentIteration

SizeValueType itk::GradientDescentOptimizer::m_CurrentIteration { 0 }
private

Methods to configure the cost function.

Definition at line 191 of file itkGradientDescentOptimizer.h.

◆ m_Gradient

DerivativeType itk::GradientDescentOptimizer::m_Gradient
protected

Methods to configure the cost function.

Definition at line 178 of file itkGradientDescentOptimizer.h.

◆ m_LearningRate

double itk::GradientDescentOptimizer::m_LearningRate { 1.0 }
protected

Methods to configure the cost function.

Definition at line 182 of file itkGradientDescentOptimizer.h.

◆ m_Maximize

bool itk::GradientDescentOptimizer::m_Maximize { false }
protected

Methods to configure the cost function.

Definition at line 180 of file itkGradientDescentOptimizer.h.

◆ m_NumberOfIterations

SizeValueType itk::GradientDescentOptimizer::m_NumberOfIterations { 100 }
private

Methods to configure the cost function.

Definition at line 190 of file itkGradientDescentOptimizer.h.

◆ m_Stop

bool itk::GradientDescentOptimizer::m_Stop { false }
private

Methods to configure the cost function.

Definition at line 185 of file itkGradientDescentOptimizer.h.

◆ m_StopCondition

StopConditionGradientDescentOptimizerEnum itk::GradientDescentOptimizer::m_StopCondition
private
Initial value:

Methods to configure the cost function.

Definition at line 187 of file itkGradientDescentOptimizer.h.

◆ m_StopConditionDescription

std::ostringstream itk::GradientDescentOptimizer::m_StopConditionDescription
private

Methods to configure the cost function.

Definition at line 192 of file itkGradientDescentOptimizer.h.

◆ m_Value

double itk::GradientDescentOptimizer::m_Value { 0.0 }
private

Methods to configure the cost function.

Definition at line 186 of file itkGradientDescentOptimizer.h.


The documentation for this class was generated from the following file:
itk::GradientDescentOptimizerEnums::StopConditionGradientDescentOptimizer::MaximumNumberOfIterations