ITK  6.0.0
Insight Toolkit
Examples/DataRepresentation/Mesh/PointSetWithCovariantVectors.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// It is common to represent geometric objects by using points on their
// surfaces and normals associated with those points. This structure can be
// easily instantiated with the \doxygen{PointSet} class.
//
// The natural class for representing normals to surfaces and
// gradients of functions is the \doxygen{CovariantVector}. A
// covariant vector differs from a vector in the way it behaves
// under affine transforms, in particular under anisotropic
// scaling. If a covariant vector represents the gradient of a
// function, the transformed covariant vector will still be the valid
// gradient of the transformed function, a property which would not
// hold with a regular vector.
//
// \index{itk::PointSet!itk::CovariantVector}
// \index{itk::CovariantVector!itk::PointSet}
//
// The following example demonstrates how a \code{CovariantVector} can
// be used as the \code{PixelType} for the \code{PointSet} class. The
// example illustrates how a deformable model could move under
// the influence of the gradient of a potential function.
//
// In order to use the CovariantVector class it is necessary to
// include its header file along with the header of the point set.
//
// \index{itk::CovariantVector!Header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkPointSet.h"
// Software Guide : EndCodeSnippet
int
main(int, char *[])
{
// Software Guide : BeginLatex
//
// The CovariantVector class is templated over the type used to
// represent the spatial coordinates and over the space dimension. Since
// the PixelType is independent of the PointType, we are free to select any
// dimension for the covariant vectors to be used as pixel type. However,
// we want to illustrate here the spirit of a deformable model. It is then
// required for the vectors representing gradients to be of the same
// dimension as the points in space.
//
// \index{itk::CovariantVector!Instantiation}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
constexpr unsigned int Dimension = 3;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then we use the PixelType (which are actually CovariantVectors) to
// instantiate the PointSet type and subsequently create a PointSet object.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto pointSet = PointSetType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The following code generates a circle and assigns gradient values to
// the points. The components of the CovariantVectors in this example are
// computed to represent the normals to the circle.
//
// \index{itk::PointSet!SetPoint()}
// \index{itk::PointSet!SetPointData()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
PointSetType::PixelType gradient;
unsigned int pointId = 0;
constexpr double radius = 300.0;
for (unsigned int i = 0; i < 360; ++i)
{
const double angle = i * std::atan(1.0) / 45.0;
point[0] = radius * std::sin(angle);
point[1] = radius * std::cos(angle);
point[2] = 1.0; // flat on the Z plane
gradient[0] = std::sin(angle);
gradient[1] = std::cos(angle);
gradient[2] = 0.0; // flat on the Z plane
pointSet->SetPoint(pointId, point);
pointSet->SetPointData(pointId, gradient);
pointId++;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can now visit all the points and use the vector on the pixel values
// to apply a deformation on the points by following the gradient of the
// function. This is along the spirit of what a deformable model could do
// at each one of its iterations. To be more formal we should use the
// function gradients as forces and multiply them by local stress tensors
// in order to obtain local deformations. The resulting deformations
// would finally be used to apply displacements on the points. However,
// to shorten the example, we will ignore this complexity for the moment.
//
// \index{itk::PointSet!PointDataIterator}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using PointDataIterator = PointSetType::PointDataContainer::ConstIterator;
PointDataIterator pixelIterator = pointSet->GetPointData()->Begin();
PointDataIterator pixelEnd = pointSet->GetPointData()->End();
using PointIterator = PointSetType::PointsContainer::Iterator;
PointIterator pointIterator = pointSet->GetPoints()->Begin();
PointIterator pointEnd = pointSet->GetPoints()->End();
while (pixelIterator != pixelEnd && pointIterator != pointEnd)
{
point = pointIterator.Value();
gradient = pixelIterator.Value();
for (unsigned int i = 0; i < Dimension; ++i)
{
point[i] += gradient[i];
}
pointIterator.Value() = point;
++pixelIterator;
++pointIterator;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The CovariantVector class does not overload the \code{+}
// operator with the \doxygen{Point}. In other words, CovariantVectors can
// not be added to points in order to get new points. Further, since we
// are ignoring physics in the example, we are also forced to do the
// illegal addition manually between the components of the gradient and
// the coordinates of the points.
//
// Note that the absence of some basic operators on the ITK geometry
// classes is completely intentional with the aim of preventing the
// incorrect use of the mathematical concepts they represent.
//
// \index{itk::CovariantVector}
//
// Software Guide : EndLatex
//
// We can finally visit all the points and print out the new values.
//
pointIterator = pointSet->GetPoints()->Begin();
pointEnd = pointSet->GetPoints()->End();
while (pointIterator != pointEnd)
{
std::cout << pointIterator.Value() << std::endl;
++pointIterator;
}
return EXIT_SUCCESS;
}
itkCovariantVector.h
itk::PointSet
A superclass of the N-dimensional mesh structure; supports point (geometric coordinate and attribute)...
Definition: itkPointSet.h:82
itk::GTest::TypedefsAndConstructors::Dimension2::PointType
ImageBaseType::PointType PointType
Definition: itkGTestTypedefsAndConstructors.h:51
itk::point
*par Constraints *The filter requires an image with at least two dimensions and a vector *length of at least The theory supports extension to scalar but *the implementation of the itk vector classes do not **The template parameter TRealType must be floating point(float or double) or *a user-defined "real" numerical type with arithmetic operations defined *sufficient to compute derivatives. **\par Performance *This filter will automatically multithread if run with *SetUsePrincipleComponents
itk::CovariantVector
A templated class holding a n-Dimensional covariant vector.
Definition: itkCovariantVector.h:70
itkPointSet.h
New
static Pointer New()
itk::GTest::TypedefsAndConstructors::Dimension2::Dimension
constexpr unsigned int Dimension
Definition: itkGTestTypedefsAndConstructors.h:44