ITK  6.0.0
Insight Toolkit
Examples/Filtering/SubsampleVolume.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates how to perform subsampling of a volume using ITK
// classes. In order to avoid aliasing artifacts, the volume must be
// processed by a low-pass filter before resampling. Here we use the
// \doxygen{RecursiveGaussianImageFilter} as a low-pass filter. The image is
// then resampled by using three different factors, one per dimension of the
// image.
//
// Software Guide : EndLatex
#include "itkImage.h"
// Software Guide : BeginLatex
//
// The most important headers to include here are those corresponding to the
// resampling image filter, the transform, the interpolator and the smoothing
// filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
int
main(int argc, char * argv[])
{
if (argc < 6)
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0]
<< " inputImageFile outputImageFile factorX factorY factorZ"
<< std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// We explicitly instantiate the pixel type and dimension of the input
// image, and the images that will be used internally for computing the
// resampling.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
constexpr unsigned int Dimension = 3;
using InputPixelType = unsigned char;
using InternalPixelType = float;
using OutputPixelType = unsigned char;
using InputImageType = itk::Image<InputPixelType, Dimension>;
using InternalImageType = itk::Image<InternalPixelType, Dimension>;
using OutputImageType = itk::Image<OutputPixelType, Dimension>;
// Software Guide : EndCodeSnippet
auto reader = ReaderType::New();
reader->SetFileName(argv[1]);
// Software Guide : BeginLatex
//
// In this particular case we take the factors for resampling directly from
// the command line arguments.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const double factorX = std::stod(argv[3]);
const double factorY = std::stod(argv[4]);
const double factorZ = std::stod(argv[5]);
// Software Guide : EndCodeSnippet
try
{
reader->Update();
}
catch (const itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}
InputImageType::ConstPointer inputImage = reader->GetOutput();
// Software Guide : BeginLatex
//
// A casting filter is instantiated in order to convert the pixel type of
// the input image into the pixel type desired for computing the resampling.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using CastFilterType =
auto caster = CastFilterType::New();
caster->SetInput(inputImage);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The smoothing filter of choice is the
// \code{RecursiveGaussianImageFilter}. We create three of them in order to
// have the freedom of performing smoothing with different sigma values
// along each dimension.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using GaussianFilterType =
auto smootherX = GaussianFilterType::New();
auto smootherY = GaussianFilterType::New();
auto smootherZ = GaussianFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The smoothing filters are connected in a cascade in the pipeline.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
smootherX->SetInput(caster->GetOutput());
smootherY->SetInput(smootherX->GetOutput());
smootherZ->SetInput(smootherY->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The sigma values to use in the smoothing filters are computed based on
// the pixel spacing of the input image and the factors provided as
// arguments.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const InputImageType::SpacingType & inputSpacing = inputImage->GetSpacing();
const double sigmaX = inputSpacing[0] * factorX;
const double sigmaY = inputSpacing[1] * factorY;
const double sigmaZ = inputSpacing[2] * factorZ;
smootherX->SetSigma(sigmaX);
smootherY->SetSigma(sigmaY);
smootherZ->SetSigma(sigmaZ);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We instruct each one of the smoothing filters to act along a particular
// direction of the image, and set them to use normalization across scale
// space in order to account for the reduction of intensity that accompanies
// the diffusion process associated with the Gaussian smoothing.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
smootherX->SetDirection(0);
smootherY->SetDirection(1);
smootherZ->SetDirection(2);
smootherX->SetNormalizeAcrossScale(false);
smootherY->SetNormalizeAcrossScale(false);
smootherZ->SetNormalizeAcrossScale(false);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The type of the resampling filter is instantiated using the internal
// image type and the output image type.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using ResampleFilterType =
auto resampler = ResampleFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Since the resampling is performed in the same physical extent of the
// input image, we select the IdentityTransform as the one to be used by the
// resampling filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
auto transform = TransformType::New();
transform->SetIdentity();
resampler->SetTransform(transform);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The Linear interpolator is selected because it provides a good run-time
// performance. For applications that require better precision you may want
// to replace this interpolator with the
// \doxygen{BSplineInterpolateImageFunction} interpolator or with the
// \doxygen{WindowedSincInterpolateImageFunction} interpolator.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using InterpolatorType =
auto interpolator = InterpolatorType::New();
resampler->SetInterpolator(interpolator);
// Software Guide : EndCodeSnippet
resampler->SetDefaultPixelValue(0); // value for regions without source
// Software Guide : BeginLatex
//
// The spacing to be used in the grid of the resampled image is computed
// using the input image spacing and the factors provided in the command
// line arguments.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
OutputImageType::SpacingType spacing;
spacing[0] = inputSpacing[0] * factorX;
spacing[1] = inputSpacing[1] * factorY;
spacing[2] = inputSpacing[2] * factorZ;
resampler->SetOutputSpacing(spacing);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The origin and direction of the input image are both preserved and passed
// to the output image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
resampler->SetOutputOrigin(inputImage->GetOrigin());
resampler->SetOutputDirection(inputImage->GetDirection());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The number of pixels to use along each direction on the grid of the
// resampled image is computed using the number of pixels in the input image
// and the sampling factors.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
inputImage->GetLargestPossibleRegion().GetSize();
size[0] = static_cast<SizeValueType>(inputSize[0] / factorX);
size[1] = static_cast<SizeValueType>(inputSize[1] / factorY);
size[2] = static_cast<SizeValueType>(inputSize[2] / factorZ);
resampler->SetSize(size);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally, the input to the resampler is taken from the output of the
// smoothing filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
resampler->SetInput(smootherZ->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// At this point we can trigger the execution of the resampling by calling
// the \code{Update()} method, or we can choose to pass the output of the
// resampling filter to another section of pipeline, for example, an image
// writer.
//
// Software Guide : EndLatex
auto writer = WriterType::New();
writer->SetInput(resampler->GetOutput());
writer->SetFileName(argv[2]);
try
{
writer->Update();
}
catch (const itk::ExceptionObject & excep)
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}
std::cout << "Resampling Done !" << std::endl;
return EXIT_SUCCESS;
}
itk::CastImageFilter
Casts input pixels to output pixel type.
Definition: itkCastImageFilter.h:100
ConstPointer
SmartPointer< const Self > ConstPointer
Definition: itkAddImageFilter.h:94
itkRecursiveGaussianImageFilter.h
itk::IdentityTransform
Implementation of an Identity Transform.
Definition: itkIdentityTransform.h:50
itkImageFileReader.h
itk::GTest::TypedefsAndConstructors::Dimension2::SizeType
ImageBaseType::SizeType SizeType
Definition: itkGTestTypedefsAndConstructors.h:49
itkImage.h
itkCastImageFilter.h
itk::ImageFileReader
Data source that reads image data from a single file.
Definition: itkImageFileReader.h:75
itk::LinearInterpolateImageFunction
Linearly interpolate an image at specified positions.
Definition: itkLinearInterpolateImageFunction.h:51
itk::ImageFileWriter
Writes image data to a single file.
Definition: itkImageFileWriter.h:90
itkIdentityTransform.h
itkImageFileWriter.h
itk::ResampleImageFilter
Resample an image via a coordinate transform.
Definition: itkResampleImageFilter.h:90
itk::Image
Templated n-dimensional image class.
Definition: itkImage.h:88
itk::RecursiveGaussianImageFilter
Base class for computing IIR convolution with an approximation of a Gaussian kernel.
Definition: itkRecursiveGaussianImageFilter.h:100
New
static Pointer New()
itkResampleImageFilter.h
itk::GTest::TypedefsAndConstructors::Dimension2::Dimension
constexpr unsigned int Dimension
Definition: itkGTestTypedefsAndConstructors.h:44
itk::SizeValueType
unsigned long SizeValueType
Definition: itkIntTypes.h:86
itk::Size::GetSize
const SizeValueType * GetSize() const
Definition: itkSize.h:169