ITK
6.0.0
Insight Toolkit
Examples/RegistrationITKv4/ImageRegistration14.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates how to do registration with a 2D Rigid Transform
// and with the Normalized Mutual Information metric.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "
itkImageRegistrationMethod.h
"
#include "
itkEuler2DTransform.h
"
#include "
itkCenteredTransformInitializer.h
"
#include "
itkNormalizedMutualInformationHistogramImageToImageMetric.h
"
#include "
itkOnePlusOneEvolutionaryOptimizer.h
"
#include "
itkNormalVariateGenerator.h
"
#include "
itkImageFileReader.h
"
#include "
itkImageFileWriter.h
"
#include "
itkResampleImageFilter.h
"
#include "
itkCastImageFilter.h
"
// The following section of code implements a Command observer
// used to monitor the evolution of the registration process.
//
#include "
itkCommand.h
"
class
CommandIterationUpdate :
public
itk::Command
{
public
:
using
Self
= CommandIterationUpdate;
using
Superclass
=
itk::Command
;
using
Pointer
=
itk::SmartPointer<Self>
;
itkNewMacro(
Self
);
protected
:
CommandIterationUpdate() { m_LastMetricValue = 0; }
public
:
using
OptimizerType =
itk::OnePlusOneEvolutionaryOptimizer
;
using
OptimizerPointer =
const
OptimizerType *;
void
Execute
(
itk::Object
* caller,
const
itk::EventObject
& event)
override
{
Execute
((
const
itk::Object
*)caller, event);
}
void
Execute
(
const
itk::Object
*
object
,
const
itk::EventObject
& event)
override
{
auto
optimizer = static_cast<OptimizerPointer>(
object
);
if
(!itk::IterationEvent().CheckEvent(&event))
{
return
;
}
double
currentValue = optimizer->GetValue();
// Only print out when the Metric value changes
if
(
itk::Math::abs
(m_LastMetricValue - currentValue) > 1
e
-7)
{
std::cout << optimizer->GetCurrentIteration() <<
" "
;
std::cout << currentValue <<
" "
;
std::cout << optimizer->GetFrobeniusNorm() <<
" "
;
std::cout << optimizer->GetCurrentPosition() << std::endl;
m_LastMetricValue = currentValue;
}
}
private
:
double
m_LastMetricValue;
};
int
main(
int
argc,
char
* argv[])
{
if
(argc < 4)
{
std::cerr <<
"Missing Parameters "
<< std::endl;
std::cerr <<
"Usage: "
<< argv[0];
std::cerr <<
" fixedImageFile movingImageFile "
;
std::cerr <<
"outputImagefile [numberOfHistogramBins] "
;
std::cerr <<
"[initialRadius] [epsilon]"
<< std::endl;
std::cerr <<
"[initialAngle(radians)] [initialTx] [initialTy]"
<< std::endl;
return
EXIT_FAILURE;
}
constexpr
unsigned
int
Dimension
= 2;
using
PixelType =
unsigned
char;
using
FixedImageType =
itk::Image<PixelType, Dimension>
;
using
MovingImageType =
itk::Image<PixelType, Dimension>
;
using
TransformType =
itk::Euler2DTransform<double>
;
using
OptimizerType =
itk::OnePlusOneEvolutionaryOptimizer
;
using
InterpolatorType =
itk::LinearInterpolateImageFunction<MovingImageType, double>
;
using
RegistrationType =
itk::ImageRegistrationMethod<FixedImageType, MovingImageType>
;
using
MetricType =
itk::NormalizedMutualInformationHistogramImageToImageMetric
<
FixedImageType,
MovingImageType>;
auto
transform =
TransformType::New
();
auto
optimizer =
OptimizerType::New
();
auto
interpolator =
InterpolatorType::New
();
auto
registration =
RegistrationType::New
();
registration->SetOptimizer(optimizer);
registration->SetTransform(transform);
registration->SetInterpolator(interpolator);
auto
metric =
MetricType::New
();
registration->SetMetric(metric);
unsigned
int
numberOfHistogramBins = 32;
if
(argc > 4)
{
numberOfHistogramBins = std::stoi(argv[4]);
std::cout <<
"Using "
<< numberOfHistogramBins <<
" Histogram bins"
<< std::endl;
}
MetricType::HistogramType::SizeType
histogramSize;
histogramSize.
SetSize
(2);
histogramSize[0] = numberOfHistogramBins;
histogramSize[1] = numberOfHistogramBins;
metric->SetHistogramSize(histogramSize);
const
unsigned
int
numberOfParameters = transform->GetNumberOfParameters();
using
ScalesType = MetricType::ScalesType;
ScalesType scales(numberOfParameters);
scales.Fill(1.0);
metric->SetDerivativeStepLengthScales(scales);
using
FixedImageReaderType =
itk::ImageFileReader<FixedImageType>
;
using
MovingImageReaderType =
itk::ImageFileReader<MovingImageType>
;
auto
fixedImageReader =
FixedImageReaderType::New
();
auto
movingImageReader =
MovingImageReaderType::New
();
fixedImageReader->SetFileName(argv[1]);
movingImageReader->SetFileName(argv[2]);
registration->SetFixedImage(fixedImageReader->GetOutput());
registration->SetMovingImage(movingImageReader->GetOutput());
fixedImageReader->Update();
movingImageReader->Update();
FixedImageType::ConstPointer
fixedImage = fixedImageReader->GetOutput();
registration->SetFixedImageRegion(fixedImage->GetBufferedRegion());
using
TransformInitializerType =
itk::CenteredTransformInitializer
<TransformType,
FixedImageType,
MovingImageType>;
auto
initializer =
TransformInitializerType::New
();
initializer->SetTransform(transform);
initializer->SetFixedImage(fixedImageReader->GetOutput());
initializer->SetMovingImage(movingImageReader->GetOutput());
initializer->GeometryOn();
initializer->InitializeTransform();
double
initialAngle = 0.0;
if
(argc > 7)
{
initialAngle = std::stod(argv[7]);
}
transform->SetAngle(initialAngle);
TransformType::OutputVectorType initialTranslation =
transform->GetTranslation();
if
(argc > 9)
{
initialTranslation[0] += std::stod(argv[8]);
initialTranslation[1] += std::stod(argv[9]);
}
transform->SetTranslation(initialTranslation);
using
ParametersType = RegistrationType::ParametersType;
ParametersType initialParameters = transform->GetParameters();
registration->SetInitialTransformParameters(initialParameters);
std::cout <<
"Initial transform parameters = "
;
std::cout << initialParameters << std::endl;
using
OptimizerScalesType = OptimizerType::ScalesType;
OptimizerScalesType optimizerScales(transform->GetNumberOfParameters());
FixedImageType::RegionType
region = fixedImage->GetLargestPossibleRegion();
FixedImageType::SizeType
size = region.
GetSize
();
FixedImageType::SpacingType spacing = fixedImage->GetSpacing();
optimizerScales[0] = 1.0 / 0.1;
// make angle move slowly
optimizerScales[1] = 1.0 / (0.1 * size[0] * spacing[0]);
optimizerScales[2] = 1.0 / (0.1 * size[1] * spacing[1]);
std::cout <<
"optimizerScales = "
<< optimizerScales << std::endl;
optimizer->SetScales(optimizerScales);
using
GeneratorType =
itk::Statistics::NormalVariateGenerator
;
auto
generator =
GeneratorType::New
();
generator->Initialize(12345);
optimizer->MaximizeOn();
optimizer->SetNormalVariateGenerator(generator);
double
initialRadius = 0.05;
if
(argc > 5)
{
initialRadius = std::stod(argv[5]);
std::cout <<
"Using initial radius = "
<< initialRadius << std::endl;
}
optimizer->Initialize(initialRadius);
double
epsilon = 0.001;
if
(argc > 6)
{
epsilon = std::stod(argv[6]);
std::cout <<
"Using epsilon = "
<< epsilon << std::endl;
}
optimizer->SetEpsilon(epsilon);
optimizer->SetMaximumIteration(2000);
// Create the Command observer and register it with the optimizer.
//
auto
observer =
CommandIterationUpdate::New
();
optimizer->AddObserver(itk::IterationEvent(), observer);
try
{
registration->Update();
std::cout <<
"Optimizer stop condition: "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch
(
const
itk::ExceptionObject & err)
{
std::cout <<
"ExceptionObject caught !"
<< std::endl;
std::cout << err << std::endl;
return
EXIT_FAILURE;
}
using
ParametersType = RegistrationType::ParametersType;
ParametersType finalParameters = registration->GetLastTransformParameters();
const
double
finalAngle = finalParameters[0];
const
double
finalTranslationX = finalParameters[1];
const
double
finalTranslationY = finalParameters[2];
const
double
rotationCenterX =
registration->GetOutput()->Get()->GetFixedParameters()[0];
const
double
rotationCenterY =
registration->GetOutput()->Get()->GetFixedParameters()[1];
const
unsigned
int
numberOfIterations = optimizer->GetCurrentIteration();
const
double
bestValue = optimizer->GetValue();
// Print out results
const
double
finalAngleInDegrees = finalAngle * 180.0 /
itk::Math::pi
;
std::cout <<
" Result = "
<< std::endl;
std::cout <<
" Angle (radians) "
<< finalAngle << std::endl;
std::cout <<
" Angle (degrees) "
<< finalAngleInDegrees << std::endl;
std::cout <<
" Translation X = "
<< finalTranslationX << std::endl;
std::cout <<
" Translation Y = "
<< finalTranslationY << std::endl;
std::cout <<
" Fixed Center X = "
<< rotationCenterX << std::endl;
std::cout <<
" Fixed Center Y = "
<< rotationCenterY << std::endl;
std::cout <<
" Iterations = "
<< numberOfIterations << std::endl;
std::cout <<
" Metric value = "
<< bestValue << std::endl;
using
ResampleFilterType =
itk::ResampleImageFilter<MovingImageType, FixedImageType>
;
auto
finalTransform =
TransformType::New
();
finalTransform->SetParameters(finalParameters);
finalTransform->SetFixedParameters(transform->GetFixedParameters());
auto
resample =
ResampleFilterType::New
();
resample->SetTransform(finalTransform);
resample->SetInput(movingImageReader->GetOutput());
resample->SetSize(fixedImage->GetLargestPossibleRegion().GetSize());
resample->SetOutputOrigin(fixedImage->GetOrigin());
resample->SetOutputSpacing(fixedImage->GetSpacing());
resample->SetOutputDirection(fixedImage->GetDirection());
resample->SetDefaultPixelValue(100);
using
OutputImageType =
itk::Image<PixelType, Dimension>
;
using
WriterType =
itk::ImageFileWriter<OutputImageType>
;
auto
writer =
WriterType::New
();
writer->SetFileName(argv[3]);
writer->SetInput(resample->GetOutput());
writer->Update();
// Software Guide : EndCodeSnippet
return
EXIT_SUCCESS;
}
Pointer
SmartPointer< Self > Pointer
Definition:
itkAddImageFilter.h:93
itkEuler2DTransform.h
ConstPointer
SmartPointer< const Self > ConstPointer
Definition:
itkAddImageFilter.h:94
itk::NormalizedMutualInformationHistogramImageToImageMetric
Computes normalized mutual information between two images to be registered using the histograms of th...
Definition:
itkNormalizedMutualInformationHistogramImageToImageMetric.h:52
itkCenteredTransformInitializer.h
itkImageFileReader.h
itk::GTest::TypedefsAndConstructors::Dimension2::SizeType
ImageBaseType::SizeType SizeType
Definition:
itkGTestTypedefsAndConstructors.h:49
itk::ImageRegistrationMethod
Base class for Image Registration Methods.
Definition:
itkImageRegistrationMethod.h:70
itk::SmartPointer< Self >
itkCastImageFilter.h
itk::Math::abs
bool abs(bool x)
Definition:
itkMath.h:840
itk::ImageFileReader
Data source that reads image data from a single file.
Definition:
itkImageFileReader.h:75
itk::LinearInterpolateImageFunction
Linearly interpolate an image at specified positions.
Definition:
itkLinearInterpolateImageFunction.h:51
itk::Command
Superclass for callback/observer methods.
Definition:
itkCommand.h:45
itk::Statistics::NormalVariateGenerator
Normal random variate generator.
Definition:
itkNormalVariateGenerator.h:98
itk::ImageFileWriter
Writes image data to a single file.
Definition:
itkImageFileWriter.h:90
itk::Command
class ITK_FORWARD_EXPORT Command
Definition:
itkObject.h:42
itk::GTest::TypedefsAndConstructors::Dimension2::RegionType
ImageBaseType::RegionType RegionType
Definition:
itkGTestTypedefsAndConstructors.h:54
itkImageRegistrationMethod.h
itkNormalizedMutualInformationHistogramImageToImageMetric.h
itkOnePlusOneEvolutionaryOptimizer.h
itk::Command::Execute
virtual void Execute(Object *caller, const EventObject &event)=0
itk::Euler2DTransform
Euler2DTransform of a vector space (e.g. space coordinates)
Definition:
itkEuler2DTransform.h:41
itkImageFileWriter.h
itk::Size::SetSize
void SetSize(const SizeValueType val[VDimension])
Definition:
itkSize.h:179
itkNormalVariateGenerator.h
itk::ResampleImageFilter
Resample an image via a coordinate transform.
Definition:
itkResampleImageFilter.h:90
itk::Object
Base class for most ITK classes.
Definition:
itkObject.h:61
itk::Math::e
static constexpr double e
Definition:
itkMath.h:56
itk::Image
Templated n-dimensional image class.
Definition:
itkImage.h:88
itk::EventObject
Abstraction of the Events used to communicating among filters and with GUIs.
Definition:
itkEventObject.h:58
itk::OnePlusOneEvolutionaryOptimizer
1+1 evolutionary strategy optimizer
Definition:
itkOnePlusOneEvolutionaryOptimizer.h:71
New
static Pointer New()
AddImageFilter
Definition:
itkAddImageFilter.h:81
itkResampleImageFilter.h
itk::Math::pi
static constexpr double pi
Definition:
itkMath.h:66
itk::GTest::TypedefsAndConstructors::Dimension2::Dimension
constexpr unsigned int Dimension
Definition:
itkGTestTypedefsAndConstructors.h:44
itkCommand.h
Superclass
BinaryGeneratorImageFilter< TInputImage1, TInputImage2, TOutputImage > Superclass
Definition:
itkAddImageFilter.h:90
itk::CenteredTransformInitializer
CenteredTransformInitializer is a helper class intended to initialize the center of rotation and the ...
Definition:
itkCenteredTransformInitializer.h:61
itk::Size::GetSize
const SizeValueType * GetSize() const
Definition:
itkSize.h:169
Generated on
unknown
for ITK by
1.8.16