ITK  6.0.0
Insight Toolkit
Examples/Segmentation/GibbsPriorImageFilter1.cxx
/*=========================================================================
*
* Copyright NumFOCUS
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* https://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates the use of the \doxygen{RGBGibbsPriorFilter}.
// The filter outputs a binary segmentation that can be improved by the
// deformable model. It is the first part of our hybrid framework.
//
// First, we include the appropriate header file.
//
// Software Guide : EndLatex
#include <iostream>
#include <string>
#include <cmath>
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
// classes help the Gibbs filter to segment the image
// image storage and I/O classes
#include "itkSize.h"
#include "itkImage.h"
#include "itkVector.h"
#define NUM_CLASSES 3
#define MAX_NUM_ITER 1
int
main(int argc, char * argv[])
{
if (argc != 4)
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " inputImage trainimage outputImage" << std::endl;
return EXIT_FAILURE;
}
std::cout << "Gibbs Prior Test Begins: " << std::endl;
// Software Guide : BeginLatex
//
// The input is a single channel 2D image; the channel number is
// \code{NUMBANDS} = 1, and \code{NDIMENSION} is set to 3.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
constexpr unsigned short NUMBANDS = 1;
constexpr unsigned short NDIMENSION = 3;
using VecImageType =
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The Gibbs prior segmentation is performed first to generate a rough
// segmentation that yields a sample of tissue from a region to be
// segmented, which will be combined to form the input for the
// isocontouring method. We define the pixel type of the output of the
// Gibbs prior filter to be \code{unsigned short}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
// Software Guide : EndCodeSnippet
// We instantiate reader and writer types
//
auto inputimagereader = ReaderType::New();
auto trainingimagereader = ReaderType::New();
auto writer = WriterType::New();
inputimagereader->SetFileName(argv[1]);
trainingimagereader->SetFileName(argv[2]);
writer->SetFileName(argv[3]);
// We convert the input into vector images
//
auto vecImage = VecImageType::New();
using VecImagePixelType = VecImageType::PixelType;
VecImageType::SizeType vecImgSize = { { 181, 217, 1 } };
index.Fill(0);
region.SetSize(vecImgSize);
region.SetIndex(index);
vecImage->SetLargestPossibleRegion(region);
vecImage->SetBufferedRegion(region);
vecImage->Allocate();
enum
{
VecImageDimension = VecImageType::ImageDimension
};
VecIterator vecIt(vecImage, vecImage->GetBufferedRegion());
vecIt.GoToBegin();
inputimagereader->Update();
trainingimagereader->Update();
ClassIterator inputIt(inputimagereader->GetOutput(),
inputimagereader->GetOutput()->GetBufferedRegion());
inputIt.GoToBegin();
// Set up the vector to store the image data
using DataVector = VecImageType::PixelType;
DataVector dblVec;
while (!vecIt.IsAtEnd())
{
dblVec[0] = inputIt.Get();
vecIt.Set(dblVec);
++vecIt;
++inputIt;
}
//----------------------------------------------------------------------
// Set membership function (Using the statistics objects)
//----------------------------------------------------------------------
namespace stat = itk::Statistics;
using VecImagePixelType = VecImageType::PixelType;
using MembershipFunctionType =
stat::MahalanobisDistanceMembershipFunction<VecImagePixelType>;
using MembershipFunctionPointer = MembershipFunctionType::Pointer;
using MembershipFunctionPointerVector =
std::vector<MembershipFunctionPointer>;
//----------------------------------------------------------------------
// Set the image model estimator (train the class models)
//----------------------------------------------------------------------
using ImageGaussianModelEstimatorType =
MembershipFunctionType,
ClassImageType>;
auto applyEstimateModel = ImageGaussianModelEstimatorType::New();
applyEstimateModel->SetNumberOfModels(NUM_CLASSES);
applyEstimateModel->SetInputImage(vecImage);
applyEstimateModel->SetTrainingImage(trainingimagereader->GetOutput());
// Run the gaussian classifier algorithm
applyEstimateModel->Update();
std::cout << " site 1 " << std::endl;
applyEstimateModel->Print(std::cout);
MembershipFunctionPointerVector membershipFunctions =
applyEstimateModel->GetMembershipFunctions();
std::cout << " site 2 " << std::endl;
//----------------------------------------------------------------------
// Set the decision rule
//----------------------------------------------------------------------
using DecisionRuleBasePointer = itk::Statistics::DecisionRule::Pointer;
using DecisionRuleType = itk::Statistics::MinimumDecisionRule;
auto myDecisionRule = DecisionRuleType::New();
std::cout << " site 3 " << std::endl;
//----------------------------------------------------------------------
// Set the classifier to be used and assigned the parameters for the
// supervised classifier algorithm except the input image which is
// grabbed from the Gibbs application pipeline.
//----------------------------------------------------------------------
//---------------------------------------------------------------------
// Software Guide : BeginLatex
//
// Then we define the classifier that is needed
// for the Gibbs prior model to make correct segmenting decisions.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using ClassifierType =
using ClassifierPointer = ClassifierType::Pointer;
ClassifierPointer myClassifier = ClassifierType::New();
// Software Guide : EndCodeSnippet
// Set the Classifier parameters
myClassifier->SetNumberOfClasses(NUM_CLASSES);
// Set the decision rule
myClassifier->SetDecisionRule((DecisionRuleBasePointer)myDecisionRule);
// Add the membership functions
for (unsigned int i = 0; i < NUM_CLASSES; ++i)
{
myClassifier->AddMembershipFunction(membershipFunctions[i]);
}
// Set the Gibbs Prior labeler
// Software Guide : BeginLatex
//
// After that we can define the multi-channel Gibbs prior model.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
using GibbsPriorFilterType =
auto applyGibbsImageFilter = GibbsPriorFilterType::New();
// Software Guide : EndCodeSnippet
// Set the MRF labeler parameters
// Software Guide : BeginLatex
//
// The parameters for the Gibbs prior filter are defined
// below. \code{NumberOfClasses} indicates how many different objects are
// in the image. The maximum number of iterations is the number of
// minimization steps. \code{ClusterSize} sets the lower limit on the
// object's size. The boundary gradient is the estimate of the variance
// between objects and background at the boundary region.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
applyGibbsImageFilter->SetNumberOfClasses(NUM_CLASSES);
applyGibbsImageFilter->SetMaximumNumberOfIterations(MAX_NUM_ITER);
applyGibbsImageFilter->SetClusterSize(10);
applyGibbsImageFilter->SetBoundaryGradient(6);
applyGibbsImageFilter->SetObjectLabel(1);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We now set the input classifier for the Gibbs prior filter and the
// input to the classifier. The classifier will calculate the mean and
// variance of the object using the class image, and the results will be
// used as parameters for the Gibbs prior model.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
applyGibbsImageFilter->SetInput(vecImage);
applyGibbsImageFilter->SetClassifier(myClassifier);
applyGibbsImageFilter->SetTrainingImage(trainingimagereader->GetOutput());
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally we execute the Gibbs prior filter using the Update() method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
applyGibbsImageFilter->Update();
// Software Guide : EndCodeSnippet
std::cout << "applyGibbsImageFilter: " << applyGibbsImageFilter;
writer->SetInput(applyGibbsImageFilter->GetOutput());
writer->Update();
// Software Guide : BeginLatex
//
// We execute this program on the image \code{brainweb89.png}. The
// following parameters are passed to the command line:
//
// \small
// \begin{verbatim}
// GibbsGuide.exe brainweb89.png brainweb89_train.png brainweb_gp.png
// \end{verbatim}
// \normalsize
//
// \code{brainweb89train} is a training image that helps to estimate the
// object statistics.
//
// Note that in order to successfully segment other images, one has to
// create suitable training images for them. We can also segment color
// (RGB) and other multi-channel images.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
Pointer
SmartPointer< Self > Pointer
Definition: itkAddImageFilter.h:93
itk::ImageRegionConstIterator::GoToBegin
void GoToBegin()
Definition: itkImageRegionConstIterator.h:196
itkMahalanobisDistanceMembershipFunction.h
itkImageFileReader.h
itk::Statistics
Definition: itkMersenneTwisterRandomVariateGenerator.h:35
itk::GTest::TypedefsAndConstructors::Dimension2::SizeType
ImageBaseType::SizeType SizeType
Definition: itkGTestTypedefsAndConstructors.h:49
itkImage.h
itk::RGBGibbsPriorFilter
The RGBGibbsPriorFilter applies Gibbs Prior model for the segmentation of MRF images.
Definition: itkRGBGibbsPriorFilter.h:56
itk::Index::Fill
void Fill(IndexValueType value)
Definition: itkIndex.h:272
itk::Statistics::DecisionRule::Pointer
SmartPointer< Self > Pointer
Definition: itkDecisionRule.h:56
itk::ImageFileReader
Data source that reads image data from a single file.
Definition: itkImageFileReader.h:75
itk::ImageRegionIterator
A multi-dimensional iterator templated over image type that walks a region of pixels.
Definition: itkImageRegionIterator.h:80
itk::GTest::TypedefsAndConstructors::Dimension2::IndexType
ImageBaseType::IndexType IndexType
Definition: itkGTestTypedefsAndConstructors.h:50
itkRGBGibbsPriorFilter.h
itkMinimumDecisionRule.h
itk::ImageFileWriter
Writes image data to a single file.
Definition: itkImageFileWriter.h:90
itk::ImageClassifierBase
Base class for the ImageClassifierBase object.
Definition: itkImageClassifierBase.h:71
itk::GTest::TypedefsAndConstructors::Dimension2::RegionType
ImageBaseType::RegionType RegionType
Definition: itkGTestTypedefsAndConstructors.h:54
itkImageFileWriter.h
itkImageGaussianModelEstimator.h
itkImageClassifierBase.h
itkVector.h
itk::ImageGaussianModelEstimator
Base class for ImageGaussianModelEstimator object.
Definition: itkImageGaussianModelEstimator.h:77
itk::Image
Templated n-dimensional image class.
Definition: itkImage.h:88
New
static Pointer New()
itk::ImageRegion::SetSize
void SetSize(const SizeType &size)
Definition: itkImageRegion.h:202
itk::Statistics::MinimumDecisionRule
A decision rule that returns the class label with the smallest discriminant score.
Definition: itkMinimumDecisionRule.h:38
itkSize.h