#include <vnl/vnl_matrix.h>
#include "vnl/algo/vnl_determinant.h"
#include "vnl/algo/vnl_matrix_inverse.h"
#include <vnl/vnl_vector.h>
#include <iostream>
namespace
{
}
vnl_vector<double>
generateCircle(double cx, double cy, double rx, double ry, int n);
void
createImage(
ImageType::Pointer image,
int w,
int h,
double cx,
double cy,
double rx,
double ry);
vnl_matrix<double>
computeP(double alpha, double beta, double gamma, double N) throw();
vnl_vector<double>
int
main(int argc, char * argv[])
{
int w = 300;
int h = 300;
if (argc < 7)
{
std::cout << "Usage " << argv[0] << " points alpha beta gamma sigma iterations [image]" << std::endl;
return EXIT_FAILURE;
}
else if (argc < 8)
{
createImage(image, w, h, 150, 150, 50, 50);
}
else if (argc == 8)
{
try
{
image = itk::ReadImage<ImageType>(argv[7]);
w = image->GetLargestPossibleRegion().GetSize()[0];
h = image->GetLargestPossibleRegion().GetSize()[1];
}
{
std::cerr << "Caught unexpected exception " << err;
return EXIT_FAILURE;
}
}
double alpha = 0.001;
double beta = 0.4;
double gamma = 100;
double iterations = 1;
int nPoints = 20;
double sigma;
nPoints = std::stoi(argv[1]);
alpha = std::stod(argv[2]);
beta = std::stod(argv[3]);
gamma = std::stod(argv[4]);
sigma = std::stod(argv[5]);
iterations = std::stoi(argv[6]);
vnl_matrix<double> P;
vnl_vector<double> v;
double N;
v = generateCircle(130, 130, 50, 50, nPoints);
N = v.size() / 2;
try
{
P = computeP(alpha, beta, gamma, N);
}
catch (...)
{
return EXIT_FAILURE;
}
gradientMagnitudeFilter->SetInput(image);
gradientMagnitudeFilter->Update();
gradientFilter->SetInput(gradientMagnitudeFilter->GetOutput());
gradientFilter->SetSigma(sigma);
gradientFilter->Update();
vnl_vector<double> x(N);
vnl_vector<double> y(N);
std::cout << "Initial snake" << std::endl;
for (int i = 0; i < N; ++i)
{
x[i] = v[2 * i];
y[i] = v[2 * i + 1];
std::cout << "(" << x[i] << ", " << y[i] << ")" << std::endl;
}
for (int i = 0; i < iterations; ++i)
{
vnl_vector<double> fex;
vnl_vector<double> fey;
fex = sampleImage(x, y, gradientFilter->GetOutput(), 0);
fey = sampleImage(x, y, gradientFilter->GetOutput(), 1);
x = (x + gamma * fex).post_multiply(P);
y = (y + gamma * fey).post_multiply(P);
}
std::cout << "Final snake after " << iterations << " iterations" << std::endl;
vnl_vector<double> v2(2 * N);
for (int i = 0; i < N; ++i)
{
v2[2 * i] = x[i];
v2[2 * i + 1] = y[i];
std::cout << "(" << x[i] << ", " << y[i] << ")" << std::endl;
}
return EXIT_SUCCESS;
}
vnl_vector<double>
generateCircle(double cx, double cy, double rx, double ry, int n)
{
vnl_vector<double> v(2 * (n + 1));
for (int i = 0; i < n; ++i)
{
}
v[2 * n] = v[0];
v[2 * n + 1] = v[1];
return v;
}
void
createImage(
ImageType::Pointer image,
int w,
int h,
double cx,
double cy,
double rx,
double ry)
{
size[0] = w;
size[1] = h;
randomImageSource->SetNumberOfWorkUnits(1);
randomImageSource->SetSize(size);
randomImageSource->SetMin(200);
randomImageSource->SetMax(255);
randomImageSource->Update();
image->SetRegions(randomImageSource->GetOutput()->GetLargestPossibleRegion());
image->Allocate();
for (int i = 0; i < w; ++i)
{
for (int j = 0; j < h; ++j)
{
index[0] = i;
index[1] = j;
if (((i - cx) * (i - cx) / (rx * rx) + (j - cy) * (j - cy) / (ry * ry)) < 1)
{
image->SetPixel(index, randomImageSource->GetOutput()->GetPixel(index) - 100);
}
else
{
image->SetPixel(index, randomImageSource->GetOutput()->GetPixel(index));
}
}
}
}
vnl_matrix<double>
computeP(double alpha, double beta, double gamma, double N) throw()
{
double a = gamma * (2 * alpha + 6 * beta) + 1;
double b = gamma * (-alpha - 4 * beta);
double c = gamma * beta;
vnl_matrix<double> P(N, N);
P.fill(0);
P.fill_diagonal(a);
for (int i = 0; i < N - 1; ++i)
{
P(i + 1, i) = b;
P(i, i + 1) = b;
}
P(0, N - 1) = b;
P(N - 1, 0) = b;
for (int i = 0; i < N - 2; ++i)
{
P(i + 2, i) = c;
P(i, i + 2) = c;
}
P(0, N - 2) = c;
P(1, N - 1) = c;
P(N - 2, 0) = c;
P(N - 1, 1) = c;
if (vnl_determinant(P) == 0.0)
{
std::cerr << "Singular matrix. Determinant is 0." << std::endl;
throw;
}
vnl_matrix<double> Pinv;
Pinv = vnl_matrix_inverse<double>(P);
return Pinv.transpose();
}
vnl_vector<double>
{
int size;
vnl_vector<double> ans(size);
for (int i = 0; i < size; ++i)
{
index[0] = x[i];
index[1] = y[i];
ans[i] = gradient->GetPixel(index)[position];
}
return ans;
}