ITK  6.0.0
Insight Toolkit
Public Types | Public Member Functions | Static Public Member Functions | Static Public Attributes | Protected Member Functions | Private Attributes | List of all members
itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput > Class Template Reference

#include <itkDiscreteGradientMagnitudeGaussianImageFunction.h>

Detailed Description

template<typename TInputImage, typename TOutput = double>
class itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >

Compute the discrete gradient magnitude gaussian of an the image at a specific location in space, i.e. point, index or continuous index. This class computes a single derivative given the order in each direction (by default zero). This class is templated over the input image type.

The Initialize() method must be called after setting the parameters and before evaluating the function.

Author
Ivan Macia, Vicomtech, Spain, https://www.vicomtech.org/en

This implementation was taken from the Insight Journal paper: https://doi.org/10.54294/mrg5is

See also
NeighborhoodOperator
ImageFunction

Definition at line 47 of file itkDiscreteGradientMagnitudeGaussianImageFunction.h.

+ Inheritance diagram for itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >:
+ Collaboration diagram for itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >:

Public Types

using ConstPointer = SmartPointer< const Self >
 
using GaussianDerivativeOperatorArrayType = FixedArray< GaussianDerivativeOperatorType, 2 *Self::ImageDimension2 >
 
using GaussianDerivativeOperatorType = itk::GaussianDerivativeOperator< TOutput, Self::ImageDimension2 >
 
using InterpolationModeEnum = itk::GaussianDerivativeOperatorEnums::InterpolationMode
 
using KernelArrayType = FixedArray< KernelType, Self::ImageDimension2 >
 
using KernelType = Neighborhood< TOutput, Self::ImageDimension2 >
 
using OperatorImageFunctionPointer = typename OperatorImageFunctionType::Pointer
 
using OperatorImageFunctionType = NeighborhoodOperatorImageFunction< InputImageType, TOutput >
 
using OrderArrayType = FixedArray< unsigned int, Self::ImageDimension2 >
 
using Pointer = SmartPointer< Self >
 
using Self = DiscreteGradientMagnitudeGaussianImageFunction
 
using Superclass = ImageFunction< TInputImage, TOutput, TOutput >
 
using VarianceArrayType = FixedArray< double, Self::ImageDimension2 >
 
- Public Types inherited from itk::ImageFunction< TInputImage, TOutput, TOutput >
using ConstPointer = SmartPointer< const Self >
 
using ContinuousIndexType = ContinuousIndex< TOutput, Self::ImageDimension >
 
using CoordinateType = TOutput
 
using IndexType = typename InputImageType::IndexType
 
using IndexValueType = typename InputImageType::IndexValueType
 
using InputImageConstPointer = typename InputImageType::ConstPointer
 
using InputImageType = TInputImage
 
using InputPixelType = typename InputImageType::PixelType
 
using OutputType = TOutput
 
using Pointer = SmartPointer< Self >
 
using PointType = Point< TOutput, Self::ImageDimension >
 
using Self = ImageFunction
 
using Superclass = FunctionBase< Point< TOutput, Self::ImageDimension >, TOutput >
 
- Public Types inherited from itk::FunctionBase< Point< TOutput, TInputImage::ImageDimension >, TOutput >
using ConstPointer = SmartPointer< const Self >
 
using InputType = Point< TOutput, TInputImage::ImageDimension >
 
using OutputType = TOutput
 
using Pointer = SmartPointer< Self >
 
using Self = FunctionBase
 
using Superclass = Object
 
- Public Types inherited from itk::Object
using ConstPointer = SmartPointer< const Self >
 
using Pointer = SmartPointer< Self >
 
using Self = Object
 
using Superclass = LightObject
 
- Public Types inherited from itk::LightObject
using ConstPointer = SmartPointer< const Self >
 
using Pointer = SmartPointer< Self >
 
using Self = LightObject
 

Public Member Functions

OutputType Evaluate (const PointType &point) const override
 
OutputType EvaluateAtContinuousIndex (const ContinuousIndexType &index) const override
 
OutputType EvaluateAtIndex (const IndexType &index) const override
 
const char * GetNameOfClass () const override
 
virtual void Initialize ()
 
void SetInputImage (const InputImageType *ptr) override
 
void SetSigma (const double sigma)
 
virtual void SetVariance (VarianceArrayType _arg)
 
virtual const VarianceArrayType GetVariance () const
 
virtual void SetVariance (double data[])
 
virtual void SetVariance (double variance)
 
virtual void SetMaximumError (double _arg)
 
virtual double GetMaximumError () const
 
virtual void SetNormalizeAcrossScale (bool _arg)
 
virtual bool GetNormalizeAcrossScale () const
 
virtual void NormalizeAcrossScaleOn ()
 
virtual void SetUseImageSpacing (bool _arg)
 
virtual bool GetUseImageSpacing () const
 
virtual void UseImageSpacingOn ()
 
virtual void SetMaximumKernelWidth (unsigned int _arg)
 
virtual unsigned int GetMaximumKernelWidth () const
 
virtual void SetInterpolationMode (const InterpolationModeEnum _arg)
 
virtual InterpolationModeEnum GetInterpolationMode () const
 
- Public Member Functions inherited from itk::ImageFunction< TInputImage, TOutput, TOutput >
void ConvertContinuousIndexToNearestIndex (const ContinuousIndexType &cindex, IndexType &index) const
 
void ConvertPointToContinuousIndex (const PointType &point, ContinuousIndexType &cindex) const
 
virtual const ContinuousIndexTypeGetEndContinuousIndex () const
 
virtual const IndexTypeGetEndIndex () const
 
const InputImageTypeGetInputImage () const
 
const char * GetNameOfClass () const override
 
virtual const ContinuousIndexTypeGetStartContinuousIndex () const
 
virtual const IndexTypeGetStartIndex () const
 
virtual bool IsInsideBuffer (const IndexType &index) const
 
virtual bool IsInsideBuffer (const ContinuousIndexType &index) const
 
virtual bool IsInsideBuffer (const PointType &point) const
 
void ConvertPointToNearestIndex (const PointType &point, IndexType &index) const
 
- Public Member Functions inherited from itk::Object
unsigned long AddObserver (const EventObject &event, Command *cmd) const
 
unsigned long AddObserver (const EventObject &event, std::function< void(const EventObject &)> function) const
 
LightObject::Pointer CreateAnother () const override
 
virtual void DebugOff () const
 
virtual void DebugOn () const
 
CommandGetCommand (unsigned long tag)
 
bool GetDebug () const
 
MetaDataDictionaryGetMetaDataDictionary ()
 
const MetaDataDictionaryGetMetaDataDictionary () const
 
virtual ModifiedTimeType GetMTime () const
 
virtual const TimeStampGetTimeStamp () const
 
bool HasObserver (const EventObject &event) const
 
void InvokeEvent (const EventObject &)
 
void InvokeEvent (const EventObject &) const
 
virtual void Modified () const
 
void Register () const override
 
void RemoveAllObservers ()
 
void RemoveObserver (unsigned long tag) const
 
void SetDebug (bool debugFlag) const
 
void SetReferenceCount (int) override
 
void UnRegister () const noexcept override
 
void SetMetaDataDictionary (const MetaDataDictionary &rhs)
 
void SetMetaDataDictionary (MetaDataDictionary &&rrhs)
 
virtual void SetObjectName (std::string _arg)
 
virtual const std::string & GetObjectName () const
 
- Public Member Functions inherited from itk::LightObject
Pointer Clone () const
 
virtual void Delete ()
 
virtual int GetReferenceCount () const
 
void Print (std::ostream &os, Indent indent=0) const
 

Static Public Member Functions

static Pointer New ()
 
- Static Public Member Functions inherited from itk::Object
static bool GetGlobalWarningDisplay ()
 
static void GlobalWarningDisplayOff ()
 
static void GlobalWarningDisplayOn ()
 
static Pointer New ()
 
static void SetGlobalWarningDisplay (bool val)
 
- Static Public Member Functions inherited from itk::LightObject
static void BreakOnError ()
 
static Pointer New ()
 

Static Public Attributes

static constexpr unsigned int ImageDimension2 = InputImageType::ImageDimension
 
- Static Public Attributes inherited from itk::ImageFunction< TInputImage, TOutput, TOutput >
static constexpr unsigned int ImageDimension
 

Protected Member Functions

 DiscreteGradientMagnitudeGaussianImageFunction ()
 
 DiscreteGradientMagnitudeGaussianImageFunction (const Self &)
 
void operator= (const Self &)
 
void PrintSelf (std::ostream &os, Indent indent) const override
 
void RecomputeGaussianKernel ()
 
 ~DiscreteGradientMagnitudeGaussianImageFunction () override=default
 
- Protected Member Functions inherited from itk::ImageFunction< TInputImage, TOutput, TOutput >
 ImageFunction ()
 
void PrintSelf (std::ostream &os, Indent indent) const override
 
 ~ImageFunction () override=default
 
- Protected Member Functions inherited from itk::FunctionBase< Point< TOutput, TInputImage::ImageDimension >, TOutput >
 FunctionBase ()=default
 
 ~FunctionBase () override=default
 
- Protected Member Functions inherited from itk::Object
 Object ()
 
bool PrintObservers (std::ostream &os, Indent indent) const
 
virtual void SetTimeStamp (const TimeStamp &timeStamp)
 
 ~Object () override
 
- Protected Member Functions inherited from itk::LightObject
virtual LightObject::Pointer InternalClone () const
 
 LightObject ()
 
virtual void PrintHeader (std::ostream &os, Indent indent) const
 
virtual void PrintTrailer (std::ostream &os, Indent indent) const
 
virtual ~LightObject ()
 

Private Attributes

InterpolationModeEnum m_InterpolationMode { InterpolationModeEnum::NearestNeighbourInterpolation }
 
KernelArrayType m_KernelArray {}
 
double m_MaximumError { 0.005 }
 
unsigned int m_MaximumKernelWidth { 30 }
 
bool m_NormalizeAcrossScale { true }
 
GaussianDerivativeOperatorArrayType m_OperatorArray {}
 
OperatorImageFunctionPointer m_OperatorImageFunction {}
 
bool m_UseImageSpacing { true }
 
VarianceArrayType m_Variance {}
 

Additional Inherited Members

- Protected Attributes inherited from itk::ImageFunction< TInputImage, TOutput, TOutput >
ContinuousIndexType m_EndContinuousIndex
 
IndexType m_EndIndex
 
InputImageConstPointer m_Image
 
ContinuousIndexType m_StartContinuousIndex
 
IndexType m_StartIndex
 
- Protected Attributes inherited from itk::LightObject
std::atomic< int > m_ReferenceCount {}
 

Member Typedef Documentation

◆ ConstPointer

template<typename TInputImage , typename TOutput = double>
using itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::ConstPointer = SmartPointer<const Self>

◆ GaussianDerivativeOperatorArrayType

template<typename TInputImage , typename TOutput = double>
using itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::GaussianDerivativeOperatorArrayType = FixedArray<GaussianDerivativeOperatorType, 2 * Self::ImageDimension2>

Array to store gaussian derivative operators one for each dimension

Definition at line 89 of file itkDiscreteGradientMagnitudeGaussianImageFunction.h.

◆ GaussianDerivativeOperatorType

template<typename TInputImage , typename TOutput = double>
using itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::GaussianDerivativeOperatorType = itk::GaussianDerivativeOperator<TOutput, Self::ImageDimension2>

◆ InterpolationModeEnum

template<typename TInputImage , typename TOutput = double>
using itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::InterpolationModeEnum = itk::GaussianDerivativeOperatorEnums::InterpolationMode

◆ KernelArrayType

template<typename TInputImage , typename TOutput = double>
using itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::KernelArrayType = FixedArray<KernelType, Self::ImageDimension2>

Array to store precomputed N-dimensional kernels for the gradient components

Definition at line 96 of file itkDiscreteGradientMagnitudeGaussianImageFunction.h.

◆ KernelType

template<typename TInputImage , typename TOutput = double>
using itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::KernelType = Neighborhood<TOutput, Self::ImageDimension2>

Precomputed N-dimensional derivative kernel

Definition at line 92 of file itkDiscreteGradientMagnitudeGaussianImageFunction.h.

◆ OperatorImageFunctionPointer

template<typename TInputImage , typename TOutput = double>
using itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::OperatorImageFunctionPointer = typename OperatorImageFunctionType::Pointer

◆ OperatorImageFunctionType

template<typename TInputImage , typename TOutput = double>
using itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::OperatorImageFunctionType = NeighborhoodOperatorImageFunction<InputImageType, TOutput>

Image function that performs convolution with the neighborhood operator

Definition at line 99 of file itkDiscreteGradientMagnitudeGaussianImageFunction.h.

◆ OrderArrayType

template<typename TInputImage , typename TOutput = double>
using itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::OrderArrayType = FixedArray<unsigned int, Self::ImageDimension2>

◆ Pointer

template<typename TInputImage , typename TOutput = double>
using itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::Pointer = SmartPointer<Self>

Smart pointer type alias support

Definition at line 59 of file itkDiscreteGradientMagnitudeGaussianImageFunction.h.

◆ Self

template<typename TInputImage , typename TOutput = double>
using itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::Self = DiscreteGradientMagnitudeGaussianImageFunction

Standard "Self" type alias

Definition at line 53 of file itkDiscreteGradientMagnitudeGaussianImageFunction.h.

◆ Superclass

template<typename TInputImage , typename TOutput = double>
using itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::Superclass = ImageFunction<TInputImage, TOutput, TOutput>

Standard "Superclass" type alias

Definition at line 56 of file itkDiscreteGradientMagnitudeGaussianImageFunction.h.

◆ VarianceArrayType

template<typename TInputImage , typename TOutput = double>
using itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::VarianceArrayType = FixedArray<double, Self::ImageDimension2>

Arrays for native types

Definition at line 83 of file itkDiscreteGradientMagnitudeGaussianImageFunction.h.

Constructor & Destructor Documentation

◆ DiscreteGradientMagnitudeGaussianImageFunction() [1/2]

template<typename TInputImage , typename TOutput = double>
itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::DiscreteGradientMagnitudeGaussianImageFunction ( )
protected

◆ DiscreteGradientMagnitudeGaussianImageFunction() [2/2]

template<typename TInputImage , typename TOutput = double>
itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::DiscreteGradientMagnitudeGaussianImageFunction ( const Self )
inlineprotected

◆ ~DiscreteGradientMagnitudeGaussianImageFunction()

template<typename TInputImage , typename TOutput = double>
itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::~DiscreteGradientMagnitudeGaussianImageFunction ( )
overrideprotecteddefault

Member Function Documentation

◆ Evaluate()

template<typename TInputImage , typename TOutput = double>
OutputType itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::Evaluate ( const PointType point) const
overridevirtual

Evaluate the function in the given dimension at specified point

Implements itk::ImageFunction< TInputImage, TOutput, TOutput >.

◆ EvaluateAtContinuousIndex()

template<typename TInputImage , typename TOutput = double>
OutputType itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::EvaluateAtContinuousIndex ( const ContinuousIndexType index) const
overridevirtual

Evaluate the function at specified ContinuousIndex position

Implements itk::ImageFunction< TInputImage, TOutput, TOutput >.

◆ EvaluateAtIndex()

template<typename TInputImage , typename TOutput = double>
OutputType itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::EvaluateAtIndex ( const IndexType index) const
overridevirtual

Evaluate the function at specified Index position

Implements itk::ImageFunction< TInputImage, TOutput, TOutput >.

◆ GetInterpolationMode()

template<typename TInputImage , typename TOutput = double>
virtual InterpolationModeEnum itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::GetInterpolationMode ( ) const
virtual

Set/Get the interpolation mode.

◆ GetMaximumError()

template<typename TInputImage , typename TOutput = double>
virtual double itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::GetMaximumError ( ) const
virtual

Set/Get the desired maximum error of the gaussian approximation. Maximum error is the difference between the area under the discrete Gaussian curve and the area under the continuous Gaussian. Maximum error affects the Gaussian operator size. The value is clamped between 0.00001 and 0.99999.

◆ GetMaximumKernelWidth()

template<typename TInputImage , typename TOutput = double>
virtual unsigned int itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::GetMaximumKernelWidth ( ) const
virtual

Set/Get a limit for growth of the kernel. Small maximum error values with large variances will yield very large kernel sizes. This value can be used to truncate a kernel in such instances. A warning will be given on truncation of the kernel.

◆ GetNameOfClass()

template<typename TInputImage , typename TOutput = double>
const char* itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::GetNameOfClass ( ) const
overridevirtual
See also
LightObject::GetNameOfClass()

Reimplemented from itk::Object.

◆ GetNormalizeAcrossScale()

template<typename TInputImage , typename TOutput = double>
virtual bool itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::GetNormalizeAcrossScale ( ) const
virtual

Set/Get the flag for calculating scale-space normalized derivatives. Normalized derivatives are obtained multiplying by the scale parameter t.

◆ GetUseImageSpacing()

template<typename TInputImage , typename TOutput = double>
virtual bool itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::GetUseImageSpacing ( ) const
virtual

Set/Get the flag for using image spacing when calculating derivatives.

◆ GetVariance()

template<typename TInputImage , typename TOutput = double>
virtual const VarianceArrayType itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::GetVariance ( ) const
virtual

Set/Get the variance for the discrete Gaussian kernel. Sets the variance for individual dimensions. The default is 0.0 in each dimension. If UseImageSpacing is true, the units are the physical units of your image. If UseImageSpacing is false then the units are pixels

◆ Initialize()

template<typename TInputImage , typename TOutput = double>
virtual void itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::Initialize ( )
inlinevirtual

Initialize the Gaussian kernel. Call this method before evaluating the function. This method MUST be called after any changes to function parameters.

Definition at line 195 of file itkDiscreteGradientMagnitudeGaussianImageFunction.h.

◆ New()

template<typename TInputImage , typename TOutput = double>
static Pointer itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::New ( )
static

Method for creation through the object factory

◆ NormalizeAcrossScaleOn()

template<typename TInputImage , typename TOutput = double>
virtual void itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::NormalizeAcrossScaleOn ( )
virtual

Set/Get the flag for calculating scale-space normalized derivatives. Normalized derivatives are obtained multiplying by the scale parameter t.

◆ operator=()

template<typename TInputImage , typename TOutput = double>
void itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::operator= ( const Self )
inlineprotected

◆ PrintSelf()

template<typename TInputImage , typename TOutput = double>
void itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::PrintSelf ( std::ostream &  os,
Indent  indent 
) const
overrideprotectedvirtual

Methods invoked by Print() to print information about the object including superclasses. Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.

Reimplemented from itk::Object.

◆ RecomputeGaussianKernel()

template<typename TInputImage , typename TOutput = double>
void itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::RecomputeGaussianKernel ( )
protected

◆ SetInputImage()

template<typename TInputImage , typename TOutput = double>
void itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::SetInputImage ( const InputImageType ptr)
overridevirtual

Set the input image.

Warning
this method caches BufferedRegion information. If the BufferedRegion has changed, user must call SetInputImage again to update cached values.

Reimplemented from itk::ImageFunction< TInputImage, TOutput, TOutput >.

◆ SetInterpolationMode()

template<typename TInputImage , typename TOutput = double>
virtual void itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::SetInterpolationMode ( const InterpolationModeEnum  _arg)
virtual

Set/Get the interpolation mode.

◆ SetMaximumError()

template<typename TInputImage , typename TOutput = double>
virtual void itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::SetMaximumError ( double  _arg)
virtual

Set/Get the desired maximum error of the gaussian approximation. Maximum error is the difference between the area under the discrete Gaussian curve and the area under the continuous Gaussian. Maximum error affects the Gaussian operator size. The value is clamped between 0.00001 and 0.99999.

◆ SetMaximumKernelWidth()

template<typename TInputImage , typename TOutput = double>
virtual void itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::SetMaximumKernelWidth ( unsigned int  _arg)
virtual

Set/Get a limit for growth of the kernel. Small maximum error values with large variances will yield very large kernel sizes. This value can be used to truncate a kernel in such instances. A warning will be given on truncation of the kernel.

◆ SetNormalizeAcrossScale()

template<typename TInputImage , typename TOutput = double>
virtual void itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::SetNormalizeAcrossScale ( bool  _arg)
virtual

Set/Get the flag for calculating scale-space normalized derivatives. Normalized derivatives are obtained multiplying by the scale parameter t.

◆ SetSigma()

template<typename TInputImage , typename TOutput = double>
void itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::SetSigma ( const double  sigma)
inline

Convenience method for setting the variance through the standard deviation

Definition at line 144 of file itkDiscreteGradientMagnitudeGaussianImageFunction.h.

◆ SetUseImageSpacing()

template<typename TInputImage , typename TOutput = double>
virtual void itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::SetUseImageSpacing ( bool  _arg)
virtual

Set/Get the flag for using image spacing when calculating derivatives.

◆ SetVariance() [1/3]

template<typename TInputImage , typename TOutput = double>
virtual void itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::SetVariance ( double  data[])
virtual

Set/Get the variance for the discrete Gaussian kernel. Sets the variance for individual dimensions. The default is 0.0 in each dimension. If UseImageSpacing is true, the units are the physical units of your image. If UseImageSpacing is false then the units are pixels

◆ SetVariance() [2/3]

template<typename TInputImage , typename TOutput = double>
virtual void itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::SetVariance ( double  variance)
inlinevirtual

Convenience method for setting the variance for all dimensions

Definition at line 134 of file itkDiscreteGradientMagnitudeGaussianImageFunction.h.

◆ SetVariance() [3/3]

template<typename TInputImage , typename TOutput = double>
virtual void itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::SetVariance ( VarianceArrayType  _arg)
virtual

Set/Get the variance for the discrete Gaussian kernel. Sets the variance for individual dimensions. The default is 0.0 in each dimension. If UseImageSpacing is true, the units are the physical units of your image. If UseImageSpacing is false then the units are pixels

◆ UseImageSpacingOn()

template<typename TInputImage , typename TOutput = double>
virtual void itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::UseImageSpacingOn ( )
virtual

Set/Get the flag for using image spacing when calculating derivatives.

Member Data Documentation

◆ ImageDimension2

template<typename TInputImage , typename TOutput = double>
constexpr unsigned int itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::ImageDimension2 = InputImageType::ImageDimension
staticconstexpr

Dimension of the underlying image

Definition at line 77 of file itkDiscreteGradientMagnitudeGaussianImageFunction.h.

◆ m_InterpolationMode

template<typename TInputImage , typename TOutput = double>
InterpolationModeEnum itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::m_InterpolationMode { InterpolationModeEnum::NearestNeighbourInterpolation }
private

Interpolation mode

Definition at line 249 of file itkDiscreteGradientMagnitudeGaussianImageFunction.h.

◆ m_KernelArray

template<typename TInputImage , typename TOutput = double>
KernelArrayType itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::m_KernelArray {}
private

Array of N-dimensional kernels used to calculate gradient components

Definition at line 237 of file itkDiscreteGradientMagnitudeGaussianImageFunction.h.

◆ m_MaximumError

template<typename TInputImage , typename TOutput = double>
double itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::m_MaximumError { 0.005 }
private

Difference between the areas under the curves of the continuous and discrete Gaussian functions

Definition at line 224 of file itkDiscreteGradientMagnitudeGaussianImageFunction.h.

◆ m_MaximumKernelWidth

template<typename TInputImage , typename TOutput = double>
unsigned int itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::m_MaximumKernelWidth { 30 }
private

Maximum kernel size allowed. This value is used to truncate a kernel that has grown too large. A warning is given when the specified maximum error causes the kernel to exceed this size

Definition at line 229 of file itkDiscreteGradientMagnitudeGaussianImageFunction.h.

◆ m_NormalizeAcrossScale

template<typename TInputImage , typename TOutput = double>
bool itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::m_NormalizeAcrossScale { true }
private

Flag for scale-space normalization of derivatives

Definition at line 243 of file itkDiscreteGradientMagnitudeGaussianImageFunction.h.

◆ m_OperatorArray

template<typename TInputImage , typename TOutput = double>
GaussianDerivativeOperatorArrayType itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::m_OperatorArray {}
private

Array of derivative operators, one for each dimension and order. First N zero-order operators are stored, then N first-order making 2*N operators altogether where N=ImageDimension

Definition at line 234 of file itkDiscreteGradientMagnitudeGaussianImageFunction.h.

◆ m_OperatorImageFunction

template<typename TInputImage , typename TOutput = double>
OperatorImageFunctionPointer itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::m_OperatorImageFunction {}
private

OperatorImageFunction

Definition at line 240 of file itkDiscreteGradientMagnitudeGaussianImageFunction.h.

◆ m_UseImageSpacing

template<typename TInputImage , typename TOutput = double>
bool itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::m_UseImageSpacing { true }
private

Flag to indicate whether to use image spacing

Definition at line 246 of file itkDiscreteGradientMagnitudeGaussianImageFunction.h.

◆ m_Variance

template<typename TInputImage , typename TOutput = double>
VarianceArrayType itk::DiscreteGradientMagnitudeGaussianImageFunction< TInputImage, TOutput >::m_Variance {}
private

Desired variance of the discrete Gaussian function

Definition at line 220 of file itkDiscreteGradientMagnitudeGaussianImageFunction.h.


The documentation for this class was generated from the following file: