ITK
4.1.0
Insight Segmentation and Registration Toolkit
|
#include <itkBayesianClassifierImageFilter.h>
Performs Bayesian Classification on an image.
Definition at line 81 of file itkBayesianClassifierImageFilter.h.
typedef SmartPointer< const Self > itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::ConstPointer |
Reimplemented from itk::ImageToImageFilter< TInputVectorImage, Image< TLabelsType,::itk::GetImageDimension< TInputVectorImage >::ImageDimension > >.
Definition at line 96 of file itkBayesianClassifierImageFilter.h.
typedef Superclass::DataObjectPointer itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::DataObjectPointer |
Smart Pointer type to a DataObject.
Reimplemented from itk::ImageSource< Image< TLabelsType,::itk::GetImageDimension< TInputVectorImage >::ImageDimension > >.
Definition at line 157 of file itkBayesianClassifierImageFilter.h.
typedef ProcessObject::DataObjectPointerArraySizeType itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::DataObjectPointerArraySizeType |
This is overloaded to create the Posteriors output image
Reimplemented from itk::ImageSource< Image< TLabelsType,::itk::GetImageDimension< TInputVectorImage >::ImageDimension > >.
Definition at line 181 of file itkBayesianClassifierImageFilter.h.
typedef DecisionRuleType::Pointer itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::DecisionRulePointer |
Definition at line 155 of file itkBayesianClassifierImageFilter.h.
typedef Statistics::MaximumDecisionRule itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::DecisionRuleType |
Decision rule to use for defining the label
Definition at line 154 of file itkBayesianClassifierImageFilter.h.
typedef itk::Image< TPosteriorsPrecisionType, itkGetStaticConstMacro(Dimension) > itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::ExtractedComponentImageType |
An image from a single component of the Posterior
Definition at line 161 of file itkBayesianClassifierImageFilter.h.
typedef InputImageType::RegionType itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::ImageRegionType |
Definition at line 115 of file itkBayesianClassifierImageFilter.h.
typedef ImageRegionConstIterator< InputImageType > itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::InputImageIteratorType |
Input and Output image iterators
Definition at line 118 of file itkBayesianClassifierImageFilter.h.
typedef InputImageType::ConstPointer itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::InputImagePointer |
Reimplemented from itk::ImageToImageFilter< TInputVectorImage, Image< TLabelsType,::itk::GetImageDimension< TInputVectorImage >::ImageDimension > >.
Definition at line 113 of file itkBayesianClassifierImageFilter.h.
typedef Superclass::InputImageType itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::InputImageType |
Input and Output image types
Reimplemented from itk::ImageToImageFilter< TInputVectorImage, Image< TLabelsType,::itk::GetImageDimension< TInputVectorImage >::ImageDimension > >.
Definition at line 102 of file itkBayesianClassifierImageFilter.h.
typedef InputImageType::PixelType itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::InputPixelType |
Pixel types.
Definition at line 122 of file itkBayesianClassifierImageFilter.h.
typedef ImageRegionConstIterator< MembershipImageType > itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::MembershipImageIteratorType |
Definition at line 141 of file itkBayesianClassifierImageFilter.h.
typedef MembershipImageType::Pointer itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::MembershipImagePointer |
Definition at line 140 of file itkBayesianClassifierImageFilter.h.
typedef TInputVectorImage itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::MembershipImageType |
Image Type and Pixel type for the images representing the membership of a pixel to a particular class. This image has arrays as pixels, the number of elements in the array is the same as the number of classes to be used.
Definition at line 138 of file itkBayesianClassifierImageFilter.h.
typedef MembershipImageType::PixelType itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::MembershipPixelType |
Definition at line 139 of file itkBayesianClassifierImageFilter.h.
typedef ImageRegionIterator< OutputImageType > itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::OutputImageIteratorType |
Definition at line 119 of file itkBayesianClassifierImageFilter.h.
typedef OutputImageType::Pointer itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::OutputImagePointer |
Reimplemented from itk::ImageSource< Image< TLabelsType,::itk::GetImageDimension< TInputVectorImage >::ImageDimension > >.
Definition at line 114 of file itkBayesianClassifierImageFilter.h.
typedef Image< TLabelsType, itkGetStaticConstMacro(Dimension) > itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::OutputImageType |
Some convenient typedefs.
Reimplemented from itk::ImageSource< Image< TLabelsType,::itk::GetImageDimension< TInputVectorImage >::ImageDimension > >.
Definition at line 112 of file itkBayesianClassifierImageFilter.h.
typedef OutputImageType::PixelType itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::OutputPixelType |
Definition at line 123 of file itkBayesianClassifierImageFilter.h.
typedef SmartPointer< Self > itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::Pointer |
Reimplemented from itk::ImageToImageFilter< TInputVectorImage, Image< TLabelsType,::itk::GetImageDimension< TInputVectorImage >::ImageDimension > >.
Definition at line 95 of file itkBayesianClassifierImageFilter.h.
typedef ImageRegionIterator< PosteriorsImageType > itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::PosteriorsImageIteratorType |
Definition at line 151 of file itkBayesianClassifierImageFilter.h.
typedef PosteriorsImageType::Pointer itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::PosteriorsImagePointer |
Definition at line 150 of file itkBayesianClassifierImageFilter.h.
typedef VectorImage< TPosteriorsPrecisionType, itkGetStaticConstMacro(Dimension) > itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::PosteriorsImageType |
Image Type and Pixel type for the images representing the Posterior probability of a pixel belonging to a particular class. This image has arrays as pixels, the number of elements in the array is the same as the number of classes to be used.
Definition at line 148 of file itkBayesianClassifierImageFilter.h.
typedef PosteriorsImageType::PixelType itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::PosteriorsPixelType |
Definition at line 149 of file itkBayesianClassifierImageFilter.h.
typedef ImageRegionConstIterator< PriorsImageType > itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::PriorsImageIteratorType |
Definition at line 133 of file itkBayesianClassifierImageFilter.h.
typedef PriorsImageType::Pointer itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::PriorsImagePointer |
Definition at line 132 of file itkBayesianClassifierImageFilter.h.
typedef VectorImage< TPriorsPrecisionType, itkGetStaticConstMacro(Dimension) > itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::PriorsImageType |
Image Type and Pixel type for the images representing the Prior probability of a pixel belonging to a particular class. This image has arrays as pixels, the number of elements in the array is the same as the number of classes to be used.
Definition at line 130 of file itkBayesianClassifierImageFilter.h.
typedef PriorsImageType::PixelType itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::PriorsPixelType |
Definition at line 131 of file itkBayesianClassifierImageFilter.h.
typedef BayesianClassifierImageFilter itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::Self |
Standard class typedefs.
Reimplemented from itk::ImageToImageFilter< TInputVectorImage, Image< TLabelsType,::itk::GetImageDimension< TInputVectorImage >::ImageDimension > >.
Definition at line 88 of file itkBayesianClassifierImageFilter.h.
typedef SmoothingFilterType::Pointer itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::SmoothingFilterPointer |
Definition at line 168 of file itkBayesianClassifierImageFilter.h.
typedef ImageToImageFilter< ExtractedComponentImageType, ExtractedComponentImageType > itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::SmoothingFilterType |
Optional Smoothing filter that will be applied to the Posteriors
Definition at line 166 of file itkBayesianClassifierImageFilter.h.
typedef ImageToImageFilter< TInputVectorImage, Image< TLabelsType, ::itk::GetImageDimension< TInputVectorImage >::ImageDimension > > itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::Superclass |
Reimplemented from itk::ImageToImageFilter< TInputVectorImage, Image< TLabelsType,::itk::GetImageDimension< TInputVectorImage >::ImageDimension > >.
Definition at line 93 of file itkBayesianClassifierImageFilter.h.
itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::BayesianClassifierImageFilter | ( | ) | [protected] |
End concept checking
virtual itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::~BayesianClassifierImageFilter | ( | ) | [inline, protected, virtual] |
Definition at line 212 of file itkBayesianClassifierImageFilter.h.
itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::BayesianClassifierImageFilter | ( | const Self & | ) | [private] |
virtual void itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::ClassifyBasedOnPosteriors | ( | ) | [protected, virtual] |
virtual void itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::ComputeBayesRule | ( | ) | [protected, virtual] |
Methods for computing the labeled map for all combinations of conditions
virtual::itk::LightObject::Pointer itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::CreateAnother | ( | void | ) | const [virtual] |
Create an object from an instance, potentially deferring to a factory. This method allows you to create an instance of an object that is exactly the same type as the referring object. This is useful in cases where an object has been cast back to a base class.
Reimplemented from itk::Object.
virtual void itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::GenerateData | ( | ) | [protected, virtual] |
Here is where the classification is computed.
Reimplemented from itk::ImageSource< Image< TLabelsType,::itk::GetImageDimension< TInputVectorImage >::ImageDimension > >.
virtual void itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::GenerateOutputInformation | ( | void | ) | [protected, virtual] |
Generate the information decribing the output data. The default implementation of this method will copy information from the input to the output. A filter may override this method if its output will have different information than its input. For instance, a filter that shrinks an image will need to provide an implementation for this method that changes the spacing of the pixels. Such filters should call their superclass' implementation of this method prior to changing the information values they need (i.e. GenerateOutputInformation() should call Superclass::GenerateOutputInformation() prior to changing the information.
Reimplemented from itk::ProcessObject.
virtual const char* itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::GetNameOfClass | ( | ) | const [virtual] |
Run-time type information (and related methods).
Reimplemented from itk::ImageToImageFilter< TInputVectorImage, Image< TLabelsType,::itk::GetImageDimension< TInputVectorImage >::ImageDimension > >.
virtual unsigned int itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::GetNumberOfSmoothingIterations | ( | ) | const [virtual] |
Number of iterations to apply the smoothing filter
PosteriorsImageType* itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::GetPosteriorImage | ( | ) | [protected] |
virtual SmoothingFilterPointer itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::GetSmoothingFilter | ( | ) | const [virtual] |
virtual DataObjectPointer itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::MakeOutput | ( | DataObjectPointerArraySizeType | idx | ) | [virtual] |
Make a DataObject of the correct type to used as the specified output. Every ProcessObject subclass must be able to create a DataObject that can be used as a specified output. This method is automatically called when DataObject::DisconnectPipeline() is called. DataObject::DisconnectPipeline, disconnects a data object from being an output of its current source. When the data object is disconnected, the ProcessObject needs to construct a replacement output data object so that the ProcessObject is in a valid state. So DataObject::DisconnectPipeline eventually calls ProcessObject::MakeOutput. Note that MakeOutput always returns a itkSmartPointer to a DataObject. ImageSource and MeshSource override this method to create the correct type of image and mesh respectively. If a filter has multiple outputs of different types, then that filter must provide an implementation of MakeOutput().
Reimplemented from itk::ImageSource< Image< TLabelsType,::itk::GetImageDimension< TInputVectorImage >::ImageDimension > >.
static Pointer itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::New | ( | ) | [static] |
Method for creation through the object factory.
Reimplemented from itk::Object.
virtual void itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::NormalizeAndSmoothPosteriors | ( | ) | [protected, virtual] |
void itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::operator= | ( | const Self & | ) | [private] |
PushBackInput(), PushFronInput() in the public section force the input to be the type expected by an ImageToImageFilter. However, these methods end of "hiding" the versions from the superclass (ProcessObject) whose arguments are DataObjects. Here, we re-expose the versions from ProcessObject to avoid warnings about hiding methods from the superclass.
Reimplemented from itk::ImageToImageFilter< TInputVectorImage, Image< TLabelsType,::itk::GetImageDimension< TInputVectorImage >::ImageDimension > >.
void itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::PrintSelf | ( | std::ostream & | os, |
Indent | indent | ||
) | const [protected, virtual] |
Methods invoked by Print() to print information about the object including superclasses. Typically not called by the user (use Print() instead) but used in the hierarchical print process to combine the output of several classes.
Reimplemented from itk::ImageToImageFilter< TInputVectorImage, Image< TLabelsType,::itk::GetImageDimension< TInputVectorImage >::ImageDimension > >.
virtual void itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::SetNumberOfSmoothingIterations | ( | unsigned int | _arg | ) | [virtual] |
Number of iterations to apply the smoothing filter
virtual void itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::SetPriors | ( | const PriorsImageType * | ) | [virtual] |
Set the priors
void itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::SetSmoothingFilter | ( | SmoothingFilterType * | ) |
Set/ Get macros for the smoothing filter that may optionally be applied to the posterior image
itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::typedef | ( | Concept::Convertible< unsigned int, TLabelsType > | ) |
Begin concept checking This class requires UnsignedIntConvertibleToLabelsCheck in the form of ( Concept::Convertible< unsigned int, TLabelsType > )
itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::typedef | ( | Concept::AdditiveOperators< TPosteriorsPrecisionType > | ) |
This class requires PosteriorsAdditiveOperatorsCheck in the form of ( Concept::AdditiveOperators< TPosteriorsPrecisionType > )
itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::typedef | ( | Concept::Convertible< int, TPosteriorsPrecisionType > | ) |
This class requires IntConvertibleToPosteriorsCheck in the form of ( Concept::Convertible< int, TPosteriorsPrecisionType > )
itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::typedef | ( | Concept::HasNumericTraits< typename InputPixelType::ValueType > | ) |
This class requires InputHasNumericTraitsCheck in the form of ( Concept::HasNumericTraits< typename InputPixelType::ValueType > )
itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::typedef | ( | Concept::HasNumericTraits< TPosteriorsPrecisionType > | ) |
This class requires PosteriorsHasNumericTraitsCheck in the form of ( Concept::HasNumericTraits< TPosteriorsPrecisionType > )
itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::typedef | ( | Concept::HasNumericTraits< TPriorsPrecisionType > | ) |
This class requires PriorsHasNumericTraitsCheck in the form of ( Concept::HasNumericTraits< TPriorsPrecisionType > )
itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::typedef | ( | Concept::MultiplyOperator< typename InputPixelType::ValueType, PriorsPixelType, PosteriorsPixelType > | ) |
This class requires InputPriorsPosteriorsMultiplyOperatorCheck in the form of ( Concept::MultiplyOperator< typename InputPixelType::ValueType, PriorsPixelType, PosteriorsPixelType > )
const unsigned int itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::Dimension = ::itk::GetImageDimension< InputImageType >::ImageDimension [static] |
Dimension of the input image
Definition at line 109 of file itkBayesianClassifierImageFilter.h.
unsigned int itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::m_NumberOfSmoothingIterations [private] |
Number of iterations to apply the smoothing filter
Definition at line 245 of file itkBayesianClassifierImageFilter.h.
SmoothingFilterPointer itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::m_SmoothingFilter [private] |
Pointer to optional Smoothing filter
Definition at line 242 of file itkBayesianClassifierImageFilter.h.
bool itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::m_UserProvidedPriors [private] |
Boolean flag indicating that the user defined the Priors optional input
Definition at line 236 of file itkBayesianClassifierImageFilter.h.
bool itk::BayesianClassifierImageFilter< TInputVectorImage, TLabelsType, TPosteriorsPrecisionType, TPriorsPrecisionType >::m_UserProvidedSmoothingFilter [private] |
Boolean flag indicating that the user provided a Smoothing filter
Definition at line 239 of file itkBayesianClassifierImageFilter.h.