ITK
4.1.0
Insight Segmentation and Registration Toolkit
|
#include <itkBayesianClassifierInitializationImageFilter.h>
This filter is intended to be used as a helper class to initialize the BayesianClassifierImageFilter.
Definition at line 76 of file itkBayesianClassifierInitializationImageFilter.h.
typedef SmartPointer< const Self > itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::ConstPointer |
Reimplemented from itk::ImageToImageFilter< TInputImage, VectorImage< TProbabilityPrecisionType,::itk::GetImageDimension< TInputImage >::ImageDimension > >.
Definition at line 95 of file itkBayesianClassifierInitializationImageFilter.h.
typedef ImageRegionConstIterator< InputImageType > itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::InputImageIteratorType |
Input image iterators
Definition at line 101 of file itkBayesianClassifierInitializationImageFilter.h.
typedef TInputImage itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::InputImageType |
Some convenient typedefs.
Reimplemented from itk::ImageToImageFilter< TInputImage, VectorImage< TProbabilityPrecisionType,::itk::GetImageDimension< TInputImage >::ImageDimension > >.
Definition at line 84 of file itkBayesianClassifierInitializationImageFilter.h.
typedef InputImageType::PixelType itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::InputPixelType |
Pixel types.
Definition at line 107 of file itkBayesianClassifierInitializationImageFilter.h.
typedef Vector< InputPixelType, 1 > itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::MeasurementVectorType |
Type of the Measurement
Definition at line 120 of file itkBayesianClassifierInitializationImageFilter.h.
typedef MembershipFunctionContainerType::Pointer itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::MembershipFunctionContainerPointer |
Definition at line 130 of file itkBayesianClassifierInitializationImageFilter.h.
typedef VectorContainer< unsigned int, MembershipFunctionPointer > itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::MembershipFunctionContainerType |
Membership function container
Definition at line 128 of file itkBayesianClassifierInitializationImageFilter.h.
typedef MembershipFunctionType::Pointer itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::MembershipFunctionPointer |
Definition at line 124 of file itkBayesianClassifierInitializationImageFilter.h.
typedef Statistics::MembershipFunctionBase< MeasurementVectorType > itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::MembershipFunctionType |
Type of the density functions
Definition at line 123 of file itkBayesianClassifierInitializationImageFilter.h.
typedef ImageRegionIterator< MembershipImageType > itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::MembershipImageIteratorType |
Definition at line 117 of file itkBayesianClassifierInitializationImageFilter.h.
typedef MembershipImageType::Pointer itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::MembershipImagePointer |
Definition at line 116 of file itkBayesianClassifierInitializationImageFilter.h.
typedef VectorImage< ProbabilityPrecisionType, itkGetStaticConstMacro(Dimension) > itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::MembershipImageType |
Image Type and Pixel type for the images representing the membership of a pixel to a particular class. This image has arrays as pixels, the number of elements in the array is the same as the number of classes to be used.
Definition at line 114 of file itkBayesianClassifierInitializationImageFilter.h.
typedef MembershipImageType::PixelType itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::MembershipPixelType |
Definition at line 115 of file itkBayesianClassifierInitializationImageFilter.h.
typedef VectorImage< ProbabilityPrecisionType, itkGetStaticConstMacro(Dimension) > itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::OutputImageType |
Some convenient typedefs.
Reimplemented from itk::ImageSource< VectorImage< TProbabilityPrecisionType,::itk::GetImageDimension< TInputImage >::ImageDimension > >.
Definition at line 92 of file itkBayesianClassifierInitializationImageFilter.h.
typedef OutputImageType::PixelType itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::OutputPixelType |
Definition at line 108 of file itkBayesianClassifierInitializationImageFilter.h.
typedef SmartPointer< Self > itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::Pointer |
Reimplemented from itk::ImageToImageFilter< TInputImage, VectorImage< TProbabilityPrecisionType,::itk::GetImageDimension< TInputImage >::ImageDimension > >.
Definition at line 94 of file itkBayesianClassifierInitializationImageFilter.h.
typedef TProbabilityPrecisionType itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::ProbabilityPrecisionType |
Definition at line 85 of file itkBayesianClassifierInitializationImageFilter.h.
typedef BayesianClassifierInitializationImageFilter itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::Self |
Standard class typedefs.
Reimplemented from itk::ImageToImageFilter< TInputImage, VectorImage< TProbabilityPrecisionType,::itk::GetImageDimension< TInputImage >::ImageDimension > >.
Definition at line 83 of file itkBayesianClassifierInitializationImageFilter.h.
typedef ImageToImageFilter< InputImageType, OutputImageType > itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::Superclass |
Reimplemented from itk::ImageToImageFilter< TInputImage, VectorImage< TProbabilityPrecisionType,::itk::GetImageDimension< TInputImage >::ImageDimension > >.
Definition at line 93 of file itkBayesianClassifierInitializationImageFilter.h.
itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::BayesianClassifierInitializationImageFilter | ( | ) | [protected] |
End concept checking
virtual itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::~BayesianClassifierInitializationImageFilter | ( | ) | [inline, protected, virtual] |
End concept checking
Definition at line 166 of file itkBayesianClassifierInitializationImageFilter.h.
itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::BayesianClassifierInitializationImageFilter | ( | const Self & | ) | [private] |
virtual::itk::LightObject::Pointer itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::CreateAnother | ( | void | ) | const [virtual] |
Create an object from an instance, potentially deferring to a factory. This method allows you to create an instance of an object that is exactly the same type as the referring object. This is useful in cases where an object has been cast back to a base class.
Reimplemented from itk::Object.
virtual void itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::GenerateData | ( | ) | [protected, virtual] |
Here is where the prior and membership probability vector images are created.
Reimplemented from itk::ImageSource< VectorImage< TProbabilityPrecisionType,::itk::GetImageDimension< TInputImage >::ImageDimension > >.
virtual void itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::GenerateOutputInformation | ( | ) | [virtual] |
Generate the information decribing the output data. The default implementation of this method will copy information from the input to the output. A filter may override this method if its output will have different information than its input. For instance, a filter that shrinks an image will need to provide an implementation for this method that changes the spacing of the pixels. Such filters should call their superclass' implementation of this method prior to changing the information values they need (i.e. GenerateOutputInformation() should call Superclass::GenerateOutputInformation() prior to changing the information.
Reimplemented from itk::ProcessObject.
virtual MembershipFunctionContainerType* itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::GetMembershipFunctionContainer | ( | ) | [virtual] |
virtual const char* itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::GetNameOfClass | ( | ) | const [virtual] |
Run-time type information (and related methods).
Reimplemented from itk::ImageToImageFilter< TInputImage, VectorImage< TProbabilityPrecisionType,::itk::GetImageDimension< TInputImage >::ImageDimension > >.
virtual unsigned int itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::GetNumberOfClasses | ( | ) | const [virtual] |
Set/Get methods for the number of classes. The user must supply this.
virtual void itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::InitializeMembershipFunctions | ( | ) | [protected, virtual] |
Initialize the membership functions. This will be called only if the membership function hasn't already been set. This method initializes membership functions using Gaussian density functions centered around the means computed using Kmeans.
static Pointer itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::New | ( | ) | [static] |
Method for creation through the object factory.
Reimplemented from itk::Object.
void itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::operator= | ( | const Self & | ) | [private] |
PushBackInput(), PushFronInput() in the public section force the input to be the type expected by an ImageToImageFilter. However, these methods end of "hiding" the versions from the superclass (ProcessObject) whose arguments are DataObjects. Here, we re-expose the versions from ProcessObject to avoid warnings about hiding methods from the superclass.
Reimplemented from itk::ImageToImageFilter< TInputImage, VectorImage< TProbabilityPrecisionType,::itk::GetImageDimension< TInputImage >::ImageDimension > >.
void itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::PrintSelf | ( | std::ostream & | os, |
Indent | indent | ||
) | const [protected, virtual] |
End concept checking
Reimplemented from itk::ImageToImageFilter< TInputImage, VectorImage< TProbabilityPrecisionType,::itk::GetImageDimension< TInputImage >::ImageDimension > >.
virtual void itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::SetMembershipFunctions | ( | MembershipFunctionContainerType * | densityFunctionContainer | ) | [virtual] |
Method to set/get the density functions. Here you can set a vector container of density functions. If no density functions are specified, the filter will create ones for you. These default density functions are Gaussian density functions centered around the K-means of the input image.
virtual void itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::SetNumberOfClasses | ( | unsigned int | _arg | ) | [virtual] |
Set/Get methods for the number of classes. The user must supply this.
itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::typedef | ( | Concept::MultiplyOperator< InputPixelType > | ) |
Begin concept checking This class requires InputMultiplyOperatorCheck in the form of ( Concept::MultiplyOperator< InputPixelType > )
itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::typedef | ( | Concept::Convertible< double, TProbabilityPrecisionType > | ) |
This class requires DoubleConvertibleToProbabilityCheck in the form of ( Concept::Convertible< double, TProbabilityPrecisionType > )
itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::typedef | ( | Concept::HasNumericTraits< InputPixelType > | ) |
This class requires InputHasNumericTraitsCheck in the form of ( Concept::HasNumericTraits< InputPixelType > )
itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::typedef | ( | Concept::HasNumericTraits< TProbabilityPrecisionType > | ) |
This class requires ProbabilityHasNumericTraitsCheck in the form of ( Concept::HasNumericTraits< TProbabilityPrecisionType > )
itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::typedef | ( | Concept::AdditiveOperators< double, InputPixelType > | ) |
This class requires DoublePlusInputCheck in the form of ( Concept::AdditiveOperators< double, InputPixelType > )
const unsigned int itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::Dimension = ::itk::GetImageDimension< InputImageType >::ImageDimension [static] |
Dimension of the input image
Definition at line 89 of file itkBayesianClassifierInitializationImageFilter.h.
MembershipFunctionContainerType::Pointer itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::m_MembershipFunctionContainer [private] |
Definition at line 190 of file itkBayesianClassifierInitializationImageFilter.h.
unsigned int itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::m_NumberOfClasses [private] |
Definition at line 188 of file itkBayesianClassifierInitializationImageFilter.h.
bool itk::BayesianClassifierInitializationImageFilter< TInputImage, TProbabilityPrecisionType >::m_UserSuppliesMembershipFunctions [private] |
Definition at line 187 of file itkBayesianClassifierInitializationImageFilter.h.