Bibliography

[1]   A. Alexandrescu. Modern C++ Design: Generic Programming and Design Patterns Applied. Professional Computing Series. Addison-Wesley, 2001.

[2]   K. Alsabti, S. Ranka, and V. Singh. An efficient k-means clustering algorithm. In First Workshop on High-Performance Data Mining, 1998.

[3]   L. Alvarez and J.-M. Morel. A Morphological Approach To Multiscale Analysis: From Principles to Equations, pages 229–254. Kluwer Academic Publishers, 1994.

[4]   ANSI-ISO. Programming Languages - C++. American National Standards Institue, 1998.

[5]   M. H. Austern. Generic Programming and the STL:. Professional Computing Series. Addison-Wesley, 1999.

[6]   J. Besag. On the statistical analysis of dirty pictures. J. Royal Statist. Soc. B., 48:259–302, 1986.

[7]   Eric Boix, Mathieu Malaterre, Benoit Regrain, and Jean-Pierre Roux. The GDCM Library. CNRS, INSERM, INSA Lyon, UCB Lyon, http://www.creatis.insa-lyon.fr/Public/Gdcm/.

[8]   R. N. Bracewell. The Fourier Transform and its Applications. McGraw-Hill, 1999.

[9]   R. N. Bracewell. Fourier Analysis and Imaging. Plenum US, 2004.

[10]   R. H. Byrd, P. Lu, and J. Nocedal. A limited memory algorithm for bound constrained optimization. SIAM Journal on Scientific and Statistical Computing, 16(5):1190–1208, 1995.

[11]   V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. International Journal on Computer Vision, 22(1):61–97, 1997.

[12]   A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Marchal. Automated multimodality image registration based on information theory. In Information Processing in Medical Imaging 1995, pages 263–274. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1995.

[13]   P. E. Danielsson. Euclidean distance mapping. Computer Graphics and Image Processing, 14:227–248, 1980.

[14]   M. H. Davis, A. Khotanzad, D. P. Flamig, and S. E. Harms. A physics-based coordinate transformation for 3-d image matching. IEEE Transactions on Medical Imaging, 16(3), June 1997.

[15]   R. Deriche. Fast algorithms for low level vision. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(1):78–87, 1990.

[16]   R. Deriche. Recursively implementing the gaussian and its derivatives. Technical Report 1893, Unite de recherche INRIA Sophia-Antipolis, avril 1993. Research Repport.

[17]   C. Dodson and T. Poston. Tensor Geometry: The Geometric Viewpoint and its Uses. Springer, 1997.

[18]   Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern classification. A Wiley-Interscience Publication, second edition, 2000.

[19]   David Eberly. Ridges in Image and Data Analysis. Kluwer Academic Publishers, Dordrecht, 1996.

[20]   E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements of Reusable Object-Oriented Software. Professional Computing Series. Addison-Wesley, 1995.

[21]   G. Gerig, O. KŁbler, R. Kikinis, and F. A. Jolesz. Nonlinear anisotropic filtering of MRI data. IEEE Transactions on Medical Imaging, 11(2):221–232, June 1992.

[22]   Stephen Grossberg. Neural dynamics of brightness perception: Features, boundaries, diffusion, and resonance. Perception and Psychophysics, 36(5):428–456, 1984.

[23]   J. Hajnal, D. J. Hawkes, and D. Hill. Medical Image Registration. CRC Press, 2001.

[24]   W. R. Hamilton. Elements of Quaternions. Chelsea Publishing Company, 1969.

[25]   A. Hendersen. The Paraview Guide. Kitware, Inc, 2004.

[26]   B. K. Horn. Closed-form solution of absolute orientation using unit quaternions. Journal of the Optical Society of America, 4:629–642, April 1987.

[27]   C. J. Joly. A Manual of Quaternions. MacMillan and Co. Limited, 1905.

[28]   Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Christine Piatko, Ruth Silverman, and Angela Y. Wu. An efficient k-means clustering algorithm: Analysis and implementation.

[29]   J. KoŽnderink and A. van Doorn. The Structure of Two-Dimensional Scalar Fields with Applications to Vision. Biol. Cybernetics, 33:151–158, 1979.

[30]   J. Koenderink and A. van Doorn. Local features of smooth shapes: Ridges and courses. SPIE Proc. Geometric Methods in Computer Vision II, 2031:2–13, 1993.

[31]   L. Kohn, J. Corrigan, and M.Donaldson, editors. To Err is Human: Building a safer health system. National Academy Press, 2001.

[32]   S. Kullback. Information Theory and Statistics. Dover Publications, 1997.

[33]   M. Leventon, W. Grimson, and O. Faugeras. Statistical shape influence in geodesic active contours. In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), volume 1, pages 316–323, 2000.

[34]   T. Lindeberg. Scale-Space Theory in Computer Science. Kluwer Academic Publishers, 1994.

[35]   H. Lodish, A. Berk, S. Zipursky, P. Matsudaira, D. Baltimore, and J. Darnell. Molecular Cell Biology. W. H. Freeman and Company, 2000.

[36]   W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3d surface construction algorithm. Computer Graphics, 21(4):163–169, July 1987.

[37]   F. Maes, A. Collignon, D. Meulen, G. Marchal, and P. Suetens. Multi-modality image registration by maximization of mutual information. IEEE Trans. on Med. Imaging, 16:187–198, 1997.

[38]   R. Malladi, J. A. Sethian, and B. C. Vermuri. Shape modeling with front propagation: A level set approach. IEEE Trans. on Pattern Analysis and Machine Intelligence, 17(2):158–174, 1995.

[39]   D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, and W. Eubank. Non-rigid multimodality image registration. In Medical Imaging 2001: Image Processing, pages 1609–1620, 2001.

[40]   D. Mattes, D. R. Haynor, H. Vesselle, T. K. Lewellen, and W. Eubank. PET-CT image registration in the chest using free-form deformations. IEEE Trans. on Medical Imaging, 22(1):120–128, January 2003.

[41]   E. H. Meijering, W. J. Niessen, J. P. Pluim, and M. A. Viergever. Quantitative comparison of sinc-approximating kernels for medical image interpolation. In W. M. Wells, A. Colchester, and S. Delp, editors, MICCAI’98 First International Conference on Medical Image Computing and Computer-Assisted Intervention, Lecture Notes in Computer Science, pages 972–980. Springer Verlag, September 1999.

[42]   David R. Musser. Introspective sorting and selection algorithms. Software–Practice and Experience, 8:983–993, 1997.

[43]   NEMA. The dicom standard. Technical report, NEMA, http://medial.nema.org/, 2013.

[44]   Dan Pelleg and Andrew Moore. Accelerating exact k -means algorithms with geometric reasoning. In Fifth ACM SIGKDD International Conference On Knowledge Discovery and Data Mining, pages 277–281, 1999.

[45]   P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis Machine Intelligence, 12:629–639, 1990.

[46]   J. P. Pluim, J. B. A. Maintz, and M. A. Viergever. Mutual-Information-Based Registration of Medical Images: A Survey. IEEE Transactions on Medical Imaging, 22(8):986–1004, August 2003.

[47]   K. Popper. Open Society and Its Enemies. Princenton University Press, 1971.

[48]   K. Popper. The Logic of Scientific Discovery. Routledge, 2002.

[49]   W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in C. Cambridge University Press, second edition, 1992.

[50]   K. Rohr, M. Fornefett, and H. S. Stiehl. Approximating thin-plate splines for elastric registration: Integration of landmark errors and orientation attributes. In A. Kuba, M. Samal, and A. Todd-Pkropek, editors, Information Processing in Medical Imaging 1999 (IPMI’99), pages 252–265. Springer, 1999.

[51]   K. Rohr, H. S. Stiehl, R. Sprengel, T. M. Buzug, J. Weese, and M. H Kuhn. Landmark-based elastic registration using approximating thin-plate splines. IEEE Transactions on Medical Imaging, 20(6):526–534, June 1997.

[52]   D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes. Nonrigid registration using free-form deformations: Application to breast mr images. IEEE Transaction on Medical Imaging, 18(8):712–721, 1999.

[53]   G. Sapiro and D. Ringach. Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans. on Image Processing, 5:1582–1586, 1996.

[54]   W. Schroeder, K. Martin, and B. Lorensen. The Visualization Toolkit, An Object Oriented Approach to 3D Graphics. Kitware Inc, 1998.

[55]   J. P. Serra. Image Analysis and Mathematical Morphology. Academic Press Inc., 1982.

[56]   J.A. Sethian. Level Set Methods and Fast Marching Methods. Cambridge University Press, 1996.

[57]   C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379–423, July 1948.

[58]   C. E. Shannon and W. Weaver. The Mathematical Theory of Communication. University of Illinois Press, 1948.

[59]   M. Styner, C. Brehbuhler, G. Szekely, and G. Gerig. Parametric estimate of intensity homogeneities applied to MRI. IEEE Trans. Medical Imaging, 19(3):153–165, March 2000.

[60]   Baart M. ter Haar Romeny, editor. Geometry-Driven Diffusion in Computer Vision. Kluwer Academic Publishers, 1994.

[61]   J. P. Thirion. Fast non-rigid matching of 3D medical image. Technical report, Research Report RR-2547, Epidure Project, INRIA Sophia, May 1995.

[62]   J.-P. Thirion. Image matching as a diffusion process: an analogy with maxwell’s demons. Medical Image Analysis, 2(3):243–260, 1998.

[63]   P. Viola and W. M. Wells III. Alignment by maximization of mutual information. IJCV, 24(2):137–154, 1997.

[64]   J. Weickert, B.M. ter Haar Romeny, and M.A. Viergever. Conservative image transformations with restoration and scale-space properties. In Proc. 1996 IEEE International Conference on Image Processing (ICIP-96, Lausanne, Sept. 16-19, 1996), pages 465–468, 1996.

[65]   R. T. Whitaker and G. Gerig. Vector-Valued Diffusion, pages 93–134. Kluwer Academic Publishers, 1994.

[66]   R. T. Whitaker and X. Xue. Variable-Conductance, Level-Set Curvature for Image Processing. In International Conference on Image Processing, pages 142–145. IEEE, 2001.

[67]   Ross T. Whitaker. Characterizing first and second order patches using geometry-limited diffusion. In Information Processing in Medical Imaging 1993 (IPMI’93), pages 149–167, 1993.

[68]   Ross T. Whitaker. Geometry-Limited Diffusion. PhD thesis, The University of North Carolina, Chapel Hill, North Carolina 27599-3175, 1993.

[69]   Ross T. Whitaker. Geometry-limited diffusion in the characterization of geometric patches in images. Computer Vision, Graphics, and Image Processing: Image Understanding, 57(1):111–120, January 1993.

[70]   Ross T. Whitaker and Stephen M. Pizer. Geometry-based image segmentation using anisotropic diffusion. In Ying-Lie O, A. Toet, H.J.A.M Heijmans, D.H. Foster, and P. Meer, editors, Shape in Picture: The mathematical description of shape in greylevel images. Springer Verlag, Heidelberg, 1993.

[71]   Ross T. Whitaker and Stephen M. Pizer. A multi-scale approach to nonuniform diffusion. Computer Vision, Graphics, and Image Processing: Image Understanding, 57(1):99–110, January 1993.

[72]   Terry S. Yoo and James M. Coggins. Using statistical pattern recognition techniques to control variable conductance diffusion. In Information Processing in Medical Imaging 1993 (IPMI’93), pages 459–471, 1993.

[73]   T.S. Yoo, U. Neumann, H. Fuchs, S.M. Pizer, T. Cullip, J. Rhoades, and R.T. Whitaker. Direct visualization of volume data. IEEE Computer Graphics and Applications, 12(4):63–71, 1992.

[74]   T.S. Yoo, S.M. Pizer, H. Fuchs, T. Cullip, J. Rhoades, and R. Whitaker. Achieving direct volume visualization with interactive semantic region selection. In Information Processing in Medical Images. Springer Verlag, 1991.

[75]   C. Zhu, R. H. Byrd, and J. Nocedal. L-bfgs-b: Algorithm 778: L-bfgs-b, fortran routines for large scale bound constrained optimization. ACM Transactions on Mathematical Software, 23(4):550–560, November 1997.