[
next
] [
prev
] [
prev-tail
] [
tail
] [
up
]
Contents
1
Reading and Writing Images
1.1
Basic Example
1.2
Pluggable Factories
1.3
Using ImageIO Classes Explicitly
1.4
Reading and Writing RGB Images
1.5
Reading, Casting and Writing Images
1.6
Extracting Regions
1.7
Extracting Slices
1.8
Reading and Writing Vector Images
1.8.1
The Minimal Example
1.8.2
Producing and Writing Covariant Images
1.8.3
Reading Covariant Images
1.9
Reading and Writing Complex Images
1.10
Extracting Components from Vector Images
1.11
Reading and Writing Image Series
1.11.1
Reading Image Series
1.11.2
Writing Image Series
1.11.3
Reading and Writing Series of RGB Images
1.12
Reading and Writing DICOM Images
1.12.1
Foreword
1.12.2
Reading and Writing a 2D Image
1.12.3
Reading a 2D DICOM Series and Writing a Volume
1.12.4
Reading a 2D DICOM Series and Writing a 2D DICOM Series
1.12.5
Printing DICOM Tags From One Slice
1.12.6
Printing DICOM Tags From a Series
1.12.7
Changing a DICOM Header
2
Filtering
2.1
Thresholding
2.1.1
Binary Thresholding
2.1.2
General Thresholding
2.2
Edge Detection
2.2.1
Canny Edge Detection
2.3
Casting and Intensity Mapping
2.3.1
Linear Mappings
2.3.2
Non Linear Mappings
2.4
Gradients
2.4.1
Gradient Magnitude
2.4.2
Gradient Magnitude With Smoothing
2.4.3
Derivative Without Smoothing
2.5
Second Order Derivatives
2.5.1
Second Order Recursive Gaussian
2.5.2
Laplacian Filters
Laplacian Filter Recursive Gaussian
2.6
Neighborhood Filters
2.6.1
Mean Filter
2.6.2
Median Filter
2.6.3
Mathematical Morphology
Binary Filters
Grayscale Filters
2.6.4
Voting Filters
Binary Median Filter
Hole Filling Filter
Iterative Hole Filling Filter
2.7
Smoothing Filters
2.7.1
Blurring
Discrete Gaussian
Binomial Blurring
Recursive Gaussian IIR
2.7.2
Local Blurring
Gaussian Blur Image Function
2.7.3
Edge Preserving Smoothing
Introduction to Anisotropic Diffusion
Gradient Anisotropic Diffusion
Curvature Anisotropic Diffusion
Curvature Flow
MinMaxCurvature Flow
Bilateral Filter
2.7.4
Edge Preserving Smoothing in Vector Images
Vector Gradient Anisotropic Diffusion
Vector Curvature Anisotropic Diffusion
2.7.5
Edge Preserving Smoothing in Color Images
Gradient Anisotropic Diffusion
Curvature Anisotropic Diffusion
2.8
Distance Map
2.9
Geometric Transformations
2.9.1
Filters You Should be Afraid to Use
2.9.2
Change Information Image Filter
2.9.3
Flip Image Filter
2.9.4
Resample Image Filter
Introduction
Importance of Spacing and Origin
A Complete Example
Rotating an Image
Rotating and Scaling an Image
Resampling using a deformation field
Subsampling and image in the same space
Resampling an Anisotropic image to make it Isotropic
2.10
Frequency Domain
2.10.1
Computing a Fast Fourier Transform (FFT)
2.10.2
Filtering on the Frequency Domain
2.11
Extracting Surfaces
2.11.1
Surface extraction
3
Registration
3.1
Registration Framework
3.2
”Hello World” Registration
3.3
Features of the Registration Framework
3.4
Monitoring Registration
3.5
Multi-Modality Registration
3.5.1
Mattes Mutual Information
3.6
Center Initialization
3.6.1
Rigid Registration in 2D
3.6.2
Initializing with Image Moments
3.6.3
Similarity Transform in 2D
3.6.4
Rigid Transform in 3D
3.6.5
Centered Initialized Affine Transform
3.7
Multi-Resolution Registration
3.7.1
Fundamentals
3.7.2
Fundamentals
3.8
Multi-Stage Registration
3.8.1
Fundamentals
3.8.2
Cascaded Multistage Registration
3.9
Transforms
3.9.1
Geometrical Representation
3.9.2
Transform General Properties
3.9.3
Identity Transform
3.9.4
Translation Transform
3.9.5
Scale Transform
3.9.6
Scale Logarithmic Transform
3.9.7
Euler2DTransform
3.9.8
CenteredRigid2DTransform
3.9.9
Similarity2DTransform
3.9.10
QuaternionRigidTransform
3.9.11
VersorTransform
3.9.12
VersorRigid3DTransform
3.9.13
Euler3DTransform
3.9.14
Similarity3DTransform
3.9.15
Rigid3DPerspectiveTransform
3.9.16
AffineTransform
3.9.17
BSplineDeformableTransform
3.9.18
KernelTransforms
3.10
Interpolators
3.10.1
Nearest Neighbor Interpolation
3.10.2
Linear Interpolation
3.10.3
B-Spline Interpolation
3.10.4
Windowed Sinc Interpolation
3.11
Metrics
3.11.1
Mean Squares Metric
Exploring a Metric
3.11.2
Normalized Correlation Metric
3.11.3
Mutual Information Metric
Parzen Windowing
Mattes et al. Implementation
3.11.4
Normalized Mutual Information Metric
3.11.5
Demons metric
3.11.6
ANTS neighborhood correlation metric
3.12
Optimizers
3.12.1
Registration using the One plus One Evolutionary Optimizer
3.12.2
Registration using masks constructed with Spatial objects
3.12.3
Rigid registrations incorporating prior knowledge
3.13
Deformable Registration
3.13.1
FEM-Based Image Registration
3.13.2
BSplines Image Registration
3.13.3
Level Set Motion for Deformable Registration
3.13.4
BSplines Multi-Grid Image Registration
3.13.5
BSplines Multi-Grid Image Registration in 3D
3.13.6
Image Warping with Kernel Splines
3.13.7
Image Warping with BSplines
3.14
Demons Deformable Registration
3.14.1
Asymmetrical Demons Deformable Registration
3.14.2
Symmetrical Demons Deformable Registration
3.15
Visualizing Deformation fields
3.15.1
Visualizing 2D deformation fields
3.15.2
Visualizing 3D deformation fields
3.16
Model Based Registration
3.17
Point Set Registration
3.17.1
Point Set Registration in 2D
3.17.2
Point Set Registration in 3D
3.17.3
Point Set to Distance Map Metric
3.18
Registration Troubleshooting
3.18.1
Too many samples outside moving image buffer
3.18.2
General heuristics for parameter fine-tunning
4
Segmentation
4.1
Region Growing
4.1.1
Connected Threshold
4.1.2
Otsu Segmentation
4.1.3
Neighborhood Connected
4.1.4
Confidence Connected
Application of the Confidence Connected filter on the Brain Web Data
4.1.5
Isolated Connected
4.1.6
Confidence Connected in Vector Images
4.2
Segmentation Based on Watersheds
4.2.1
Overview
4.2.2
Using the ITK Watershed Filter
4.3
Level Set Segmentation
4.3.1
Fast Marching Segmentation
4.3.2
Shape Detection Segmentation
4.3.3
Geodesic Active Contours Segmentation
4.3.4
Threshold Level Set Segmentation
4.3.5
Canny-Edge Level Set Segmentation
4.3.6
Laplacian Level Set Segmentation
4.3.7
Geodesic Active Contours Segmentation With Shape Guidance
4.4
Feature Extraction
4.4.1
Hough Transform
Line Extraction
Circle Extraction
5
Statistics
5.1
Data Containers
5.1.1
Sample Interface
5.1.2
Sample Adaptors
ImageToListSampleAdaptor
PointSetToListSampleAdaptor
5.1.3
Histogram
5.1.4
Subsample
5.1.5
MembershipSample
5.1.6
MembershipSampleGenerator
5.1.7
K-d Tree
5.2
Algorithms and Functions
5.2.1
Sample Statistics
Mean and Covariance
Weighted Mean and Covariance
5.2.2
Sample Generation
SampleToHistogramFilter
NeighborhoodSampler
5.2.3
Sample Sorting
5.2.4
Probability Density Functions
Gaussian Distribution
5.2.5
Distance Metric
Euclidean Distance
5.2.6
Decision Rules
Maximum Decision Rule
Minimum Decision Rule
Maximum Ratio Decision Rule
5.2.7
Random Variable Generation
Normal (Gaussian) Distribution
5.3
Statistics applied to Images
5.3.1
Image Histograms
Scalar Image Histogram with Adaptor
Scalar Image Histogram with Generator
Color Image Histogram with Generator
Color Image Histogram Writing
5.3.2
Image Information Theory
Computing Image Entropy
Computing Images Mutual Information
5.4
Classification
5.4.1
k-d Tree Based k-Means Clustering
5.4.2
K-Means Classification
5.4.3
Bayesian Plug-In Classifier
5.4.4
Expectation Maximization Mixture Model Estimation
5.4.5
Classification using Markov Random Field
[
next
] [
prev
] [
prev-tail
] [
front
] [
up
]