ITK  6.0.0
Insight Toolkit
itkBoxUtilities.h
Go to the documentation of this file.
1 /*=========================================================================
2  *
3  * Copyright NumFOCUS
4  *
5  * Licensed under the Apache License, Version 2.0 (the "License");
6  * you may not use this file except in compliance with the License.
7  * You may obtain a copy of the License at
8  *
9  * https://www.apache.org/licenses/LICENSE-2.0.txt
10  *
11  * Unless required by applicable law or agreed to in writing, software
12  * distributed under the License is distributed on an "AS IS" BASIS,
13  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14  * See the License for the specific language governing permissions and
15  * limitations under the License.
16  *
17  *=========================================================================*/
18 #ifndef itkBoxUtilities_h
19 #define itkBoxUtilities_h
20 
21 #include "itkProgressReporter.h"
23 #include "itkImageRegionIterator.h"
26 #include "itkImageRegionIterator.h"
27 #include "itkOffset.h"
30 #include <algorithm> // For min.
31 
32 /*
33  *
34  * This code was contributed in the Insight Journal paper:
35  * "Efficient implementation of kernel filtering"
36  * by Beare R., Lehmann G
37  * https://doi.org/10.54294/igq8fn
38  *
39  */
40 
42 {
43 
44 template <typename TIterator>
45 inline TIterator *
46 setConnectivityEarlyBox(TIterator * it, bool fullyConnected = false)
47 {
48  // activate the "previous" neighbours
49  typename TIterator::OffsetType offset;
50  it->ClearActiveList();
51  if (!fullyConnected)
52  {
53  // only activate the neighbors that are face connected
54  // to the current pixel. do not include the center pixel
55  offset.Fill(0);
56  for (unsigned int d = 0; d < TIterator::Dimension; ++d)
57  {
58  offset[d] = -1;
59  it->ActivateOffset(offset);
60  offset[d] = 0;
61  }
62  }
63  else
64  {
65  // activate all neighbors that are face+edge+vertex
66  // connected to the current pixel. do not include the center pixel
67  const unsigned int centerIndex = it->GetCenterNeighborhoodIndex();
68  for (unsigned int d = 0; d < centerIndex; ++d)
69  {
70  offset = it->GetOffset(d);
71  // check for positives in any dimension
72  bool keep = true;
73  for (unsigned int i = 0; i < TIterator::Dimension; ++i)
74  {
75  if (offset[i] > 0)
76  {
77  keep = false;
78  break;
79  }
80  }
81  if (keep)
82  {
83  it->ActivateOffset(offset);
84  }
85  }
86  offset.Fill(0);
87  it->DeactivateOffset(offset);
88  }
89  return it;
90 }
91 
92 } // namespace itk_impl_details
93 
94 namespace itk
95 {
96 
97 template <typename TInputImage, typename TOutputImage>
98 void
99 BoxAccumulateFunction(const TInputImage * inputImage,
100  const TOutputImage * outputImage,
101  typename TInputImage::RegionType inputRegion,
102  typename TOutputImage::RegionType outputRegion)
103 {
104  // type alias
105  using InputImageType = TInputImage;
106  using OffsetType = typename TInputImage::OffsetType;
107  using OutputImageType = TOutputImage;
108  using OutputPixelType = typename TOutputImage::PixelType;
109 
110  using InputIterator = ImageRegionConstIterator<TInputImage>;
111 
112  using NOutputIterator = ShapedNeighborhoodIterator<TOutputImage>;
113  InputIterator inIt(inputImage, inputRegion);
114  auto kernelRadius = TInputImage::SizeType::Filled(1);
115 
116  NOutputIterator noutIt(kernelRadius, outputImage, outputRegion);
117  // this iterator is fully connected
119 
121  oBC.SetConstant(OutputPixelType{});
122  noutIt.OverrideBoundaryCondition(&oBC);
123  // This uses several iterators. An alternative and probably better
124  // approach would be to copy the input to the output and convolve
125  // with the following weights (in 2D)
126  // -(dim - 1) 1
127  // 1 1
128  // The result of each convolution needs to get written back to the
129  // image being convolved so that the accumulation propagates
130  // This should be implementable with neighborhood operators.
131 
132  std::vector<int> weights;
133  typename NOutputIterator::ConstIterator sIt;
134  for (auto idxIt = noutIt.GetActiveIndexList().begin(); idxIt != noutIt.GetActiveIndexList().end(); ++idxIt)
135  {
136  OffsetType offset = noutIt.GetOffset(*idxIt);
137  int w = -1;
138  for (unsigned int k = 0; k < InputImageType::ImageDimension; ++k)
139  {
140  if (offset[k] != 0)
141  {
142  w *= offset[k];
143  }
144  }
145  // std::cout << offset << " " << w << std::endl;
146  weights.push_back(w);
147  }
148 
149  for (inIt.GoToBegin(), noutIt.GoToBegin(); !noutIt.IsAtEnd(); ++inIt, ++noutIt)
150  {
151  OutputPixelType sum = 0;
152  int k;
153  for (k = 0, sIt = noutIt.Begin(); !sIt.IsAtEnd(); ++sIt, ++k)
154  {
155  sum += sIt.Get() * weights[k];
156  }
157  noutIt.SetCenterPixel(sum + inIt.Get());
158  }
159 }
160 
161 // a function to generate corners of arbitrary dimension box
162 template <typename TImage>
163 std::vector<typename TImage::OffsetType>
164 CornerOffsets(const TImage * im)
165 {
166  using NIterator = ShapedNeighborhoodIterator<TImage>;
167  auto unitradius = TImage::SizeType::Filled(1);
168  const NIterator n1(unitradius, im, im->GetRequestedRegion());
169  const unsigned int centerIndex = n1.GetCenterNeighborhoodIndex();
170  typename NIterator::OffsetType offset;
171  std::vector<typename TImage::OffsetType> result;
172  for (unsigned int d = 0; d < centerIndex * 2 + 1; ++d)
173  {
174  offset = n1.GetOffset(d);
175  // check whether this is a corner - corners have no zeros
176  bool corner = true;
177  for (unsigned int k = 0; k < TImage::ImageDimension; ++k)
178  {
179  if (offset[k] == 0)
180  {
181  corner = false;
182  break;
183  }
184  }
185  if (corner)
186  {
187  result.push_back(offset);
188  }
189  }
190  return (result);
191 }
192 
193 template <typename TInputImage, typename TOutputImage>
194 void
195 BoxMeanCalculatorFunction(const TInputImage * accImage,
196  TOutputImage * outputImage,
197  typename TInputImage::RegionType inputRegion,
198  typename TOutputImage::RegionType outputRegion,
199  typename TInputImage::SizeType radius)
200 {
201  // type alias
202  using InputImageType = TInputImage;
203  using RegionType = typename TInputImage::RegionType;
204  using SizeType = typename TInputImage::SizeType;
205  using IndexType = typename TInputImage::IndexType;
206  using OffsetType = typename TInputImage::OffsetType;
207  using OutputImageType = TOutputImage;
208  using OutputPixelType = typename TOutputImage::PixelType;
209  // use the face generator for speed
211  using FaceListType = typename FaceCalculatorType::FaceListType;
212  FaceCalculatorType faceCalculator;
213 
215 
216  // this process is actually slightly asymmetric because we need to
217  // subtract rectangles that are next to our kernel, not overlapping it
218  SizeType kernelSize;
219  SizeType internalRadius;
220  SizeType regionLimit;
221 
222  IndexType regionStart = inputRegion.GetIndex();
223  for (unsigned int i = 0; i < TInputImage::ImageDimension; ++i)
224  {
225  kernelSize[i] = radius[i] * 2 + 1;
226  internalRadius[i] = radius[i] + 1;
227  regionLimit[i] = inputRegion.GetSize()[i] + regionStart[i] - 1;
228  }
229 
230  using AccPixType = typename NumericTraits<OutputPixelType>::RealType;
231  // get a set of offsets to corners for a unit hypercube in this image
232  std::vector<OffsetType> unitCorners = CornerOffsets<TInputImage>(accImage);
233  std::vector<OffsetType> realCorners;
234  std::vector<AccPixType> weights;
235  // now compute the weights
236  for (unsigned int k = 0; k < unitCorners.size(); ++k)
237  {
238  int prod = 1;
239  OffsetType thisCorner;
240  for (unsigned int i = 0; i < TInputImage::ImageDimension; ++i)
241  {
242  prod *= unitCorners[k][i];
243  if (unitCorners[k][i] > 0)
244  {
245  thisCorner[i] = radius[i];
246  }
247  else
248  {
249  thisCorner[i] = -(static_cast<OffsetValueType>(radius[i]) + 1);
250  }
251  }
252  weights.push_back((AccPixType)prod);
253  realCorners.push_back(thisCorner);
254  }
255 
256  FaceListType faceList = faceCalculator(accImage, outputRegion, internalRadius);
257  // start with the body region
258  for (const auto & face : faceList)
259  {
260  if (&face == &faceList.front())
261  {
262  // this is the body region. This is meant to be an optimized
263  // version that doesn't use neighborhood regions
264  // compute the various offsets
265  AccPixType pixelscount = 1;
266  for (unsigned int i = 0; i < TInputImage::ImageDimension; ++i)
267  {
268  pixelscount *= (AccPixType)(2 * radius[i] + 1);
269  }
270 
271  using OutputIteratorType = ImageRegionIterator<OutputImageType>;
272  using InputIteratorType = ImageRegionConstIterator<InputImageType>;
273 
274  using CornerItVecType = std::vector<InputIteratorType>;
275  CornerItVecType cornerItVec;
276  // set up the iterators for each corner
277  for (unsigned int k = 0; k < realCorners.size(); ++k)
278  {
279  typename InputImageType::RegionType tReg = face;
280  tReg.SetIndex(tReg.GetIndex() + realCorners[k]);
281  InputIteratorType tempIt(accImage, tReg);
282  tempIt.GoToBegin();
283  cornerItVec.push_back(tempIt);
284  }
285  // set up the output iterator
286  OutputIteratorType oIt(outputImage, face);
287  // now do the work
288  for (oIt.GoToBegin(); !oIt.IsAtEnd(); ++oIt)
289  {
290  AccPixType sum = 0;
291  // check each corner
292  for (unsigned int k = 0; k < cornerItVec.size(); ++k)
293  {
294  sum += weights[k] * cornerItVec[k].Get();
295  // increment each corner iterator
296  ++(cornerItVec[k]);
297  }
298  oIt.Set(static_cast<OutputPixelType>(sum / pixelscount));
299  }
300  }
301  else
302  {
303  // now we need to deal with the border regions
304  using OutputIteratorType = ImageRegionIteratorWithIndex<OutputImageType>;
305  OutputIteratorType oIt(outputImage, face);
306  // now do the work
307  for (oIt.GoToBegin(); !oIt.IsAtEnd(); ++oIt)
308  {
309  // figure out the number of pixels in the box by creating an
310  // equivalent region and cropping - this could probably be
311  // included in the loop below.
312  RegionType currentKernelRegion;
313  currentKernelRegion.SetSize(kernelSize);
314  // compute the region's index
315  IndexType kernelRegionIdx = oIt.GetIndex();
316  const IndexType centIndex = kernelRegionIdx;
317  for (unsigned int i = 0; i < TInputImage::ImageDimension; ++i)
318  {
319  kernelRegionIdx[i] -= radius[i];
320  }
321  currentKernelRegion.SetIndex(kernelRegionIdx);
322  currentKernelRegion.Crop(inputRegion);
323  const OffsetValueType edgepixelscount = currentKernelRegion.GetNumberOfPixels();
324  AccPixType sum = 0;
325  // rules are : for each corner,
326  // for each dimension
327  // if dimension offset is positive -> this is
328  // a leading edge. Crop if outside the input
329  // region
330  // if dimension offset is negative -> this is
331  // a trailing edge. Ignore if it is outside
332  // image region
333  for (unsigned int k = 0; k < realCorners.size(); ++k)
334  {
335  IndexType thisCorner = centIndex + realCorners[k];
336  bool includeCorner = true;
337  for (unsigned int j = 0; j < TInputImage::ImageDimension; ++j)
338  {
339  if (unitCorners[k][j] > 0)
340  {
341  // leading edge - crop it
342  thisCorner[j] = std::min(thisCorner[j], static_cast<OffsetValueType>(regionLimit[j]));
343  }
344  else
345  {
346  // trailing edge - check bounds
347  if (thisCorner[j] < regionStart[j])
348  {
349  includeCorner = false;
350  break;
351  }
352  }
353  }
354  if (includeCorner)
355  {
356  sum += accImage->GetPixel(thisCorner) * weights[k];
357  }
358  }
359 
360  oIt.Set(static_cast<OutputPixelType>(sum / (AccPixType)edgepixelscount));
361  }
362  }
363  }
364 }
365 
366 template <typename TInputImage, typename TOutputImage>
367 void
368 BoxSigmaCalculatorFunction(const TInputImage * accImage,
369  TOutputImage * outputImage,
370  typename TInputImage::RegionType inputRegion,
371  typename TOutputImage::RegionType outputRegion,
372  typename TInputImage::SizeType radius)
373 {
374  // type alias
375  using InputImageType = TInputImage;
376  using RegionType = typename TInputImage::RegionType;
377  using SizeType = typename TInputImage::SizeType;
378  using IndexType = typename TInputImage::IndexType;
379  using OffsetType = typename TInputImage::OffsetType;
380  using OutputImageType = TOutputImage;
381  using OutputPixelType = typename TOutputImage::PixelType;
382  using InputPixelType = typename TInputImage::PixelType;
383  // use the face generator for speed
385  using FaceListType = typename FaceCalculatorType::FaceListType;
386  FaceCalculatorType faceCalculator;
387 
389 
390  // this process is actually slightly asymmetric because we need to
391  // subtract rectangles that are next to our kernel, not overlapping it
392  SizeType kernelSize;
393  SizeType internalRadius;
394  SizeType regionLimit;
395  IndexType regionStart = inputRegion.GetIndex();
396  for (unsigned int i = 0; i < TInputImage::ImageDimension; ++i)
397  {
398  kernelSize[i] = radius[i] * 2 + 1;
399  internalRadius[i] = radius[i] + 1;
400  regionLimit[i] = inputRegion.GetSize()[i] + regionStart[i] - 1;
401  }
402 
403  using AccPixType = typename NumericTraits<OutputPixelType>::RealType;
404  // get a set of offsets to corners for a unit hypercube in this image
405  std::vector<OffsetType> unitCorners = CornerOffsets<TInputImage>(accImage);
406  std::vector<OffsetType> realCorners;
407  std::vector<AccPixType> weights;
408  // now compute the weights
409  for (unsigned int k = 0; k < unitCorners.size(); ++k)
410  {
411  int prod = 1;
412  OffsetType thisCorner;
413  for (unsigned int i = 0; i < TInputImage::ImageDimension; ++i)
414  {
415  prod *= unitCorners[k][i];
416  if (unitCorners[k][i] > 0)
417  {
418  thisCorner[i] = radius[i];
419  }
420  else
421  {
422  thisCorner[i] = -(static_cast<OffsetValueType>(radius[i]) + 1);
423  }
424  }
425  weights.push_back((AccPixType)prod);
426  realCorners.push_back(thisCorner);
427  }
428 
429  FaceListType faceList = faceCalculator(accImage, outputRegion, internalRadius);
430  // start with the body region
431  for (const auto & face : faceList)
432  {
433  if (&face == &faceList.front())
434  {
435  // this is the body region. This is meant to be an optimized
436  // version that doesn't use neighborhood regions
437  // compute the various offsets
438  AccPixType pixelscount = 1;
439  for (unsigned int i = 0; i < TInputImage::ImageDimension; ++i)
440  {
441  pixelscount *= (AccPixType)(2 * radius[i] + 1);
442  }
443 
444  using OutputIteratorType = ImageRegionIterator<OutputImageType>;
445  using InputIteratorType = ImageRegionConstIterator<InputImageType>;
446 
447  using CornerItVecType = std::vector<InputIteratorType>;
448  CornerItVecType cornerItVec;
449  // set up the iterators for each corner
450  for (unsigned int k = 0; k < realCorners.size(); ++k)
451  {
452  typename InputImageType::RegionType tReg = face;
453  tReg.SetIndex(tReg.GetIndex() + realCorners[k]);
454  InputIteratorType tempIt(accImage, tReg);
455  tempIt.GoToBegin();
456  cornerItVec.push_back(tempIt);
457  }
458  // set up the output iterator
459  OutputIteratorType oIt(outputImage, face);
460  // now do the work
461  for (oIt.GoToBegin(); !oIt.IsAtEnd(); ++oIt)
462  {
463  AccPixType sum = 0;
464  AccPixType squareSum = 0;
465  // check each corner
466  for (unsigned int k = 0; k < cornerItVec.size(); ++k)
467  {
468  const InputPixelType & i = cornerItVec[k].Get();
469  sum += weights[k] * i[0];
470  squareSum += weights[k] * i[1];
471  // increment each corner iterator
472  ++(cornerItVec[k]);
473  }
474 
475  oIt.Set(static_cast<OutputPixelType>(std::sqrt((squareSum - sum * sum / pixelscount) / (pixelscount - 1))));
476  }
477  }
478  else
479  {
480  // now we need to deal with the border regions
481  using OutputIteratorType = ImageRegionIteratorWithIndex<OutputImageType>;
482  OutputIteratorType oIt(outputImage, face);
483  // now do the work
484  for (oIt.GoToBegin(); !oIt.IsAtEnd(); ++oIt)
485  {
486  // figure out the number of pixels in the box by creating an
487  // equivalent region and cropping - this could probably be
488  // included in the loop below.
489  RegionType currentKernelRegion;
490  currentKernelRegion.SetSize(kernelSize);
491  // compute the region's index
492  IndexType kernelRegionIdx = oIt.GetIndex();
493  const IndexType centIndex = kernelRegionIdx;
494  for (unsigned int i = 0; i < TInputImage::ImageDimension; ++i)
495  {
496  kernelRegionIdx[i] -= radius[i];
497  }
498  currentKernelRegion.SetIndex(kernelRegionIdx);
499  currentKernelRegion.Crop(inputRegion);
500  const SizeValueType edgepixelscount = currentKernelRegion.GetNumberOfPixels();
501  AccPixType sum = 0;
502  AccPixType squareSum = 0;
503  // rules are : for each corner,
504  // for each dimension
505  // if dimension offset is positive -> this is
506  // a leading edge. Crop if outside the input
507  // region
508  // if dimension offset is negative -> this is
509  // a trailing edge. Ignore if it is outside
510  // image region
511  for (unsigned int k = 0; k < realCorners.size(); ++k)
512  {
513  IndexType thisCorner = centIndex + realCorners[k];
514  bool includeCorner = true;
515  for (unsigned int j = 0; j < TInputImage::ImageDimension; ++j)
516  {
517  if (unitCorners[k][j] > 0)
518  {
519  // leading edge - crop it
520  thisCorner[j] = std::min(thisCorner[j], static_cast<OffsetValueType>(regionLimit[j]));
521  }
522  else
523  {
524  // trailing edge - check bounds
525  if (thisCorner[j] < regionStart[j])
526  {
527  includeCorner = false;
528  break;
529  }
530  }
531  }
532  if (includeCorner)
533  {
534  const InputPixelType & i = accImage->GetPixel(thisCorner);
535  sum += weights[k] * i[0];
536  squareSum += weights[k] * i[1];
537  }
538  }
539 
540  oIt.Set(
541  static_cast<OutputPixelType>(std::sqrt((squareSum - sum * sum / edgepixelscount) / (edgepixelscount - 1))));
542  }
543  }
544  }
545 }
546 
547 template <typename TInputImage, typename TOutputImage>
548 void
549 BoxSquareAccumulateFunction(const TInputImage * inputImage,
550  TOutputImage * outputImage,
551  typename TInputImage::RegionType inputRegion,
552  typename TOutputImage::RegionType outputRegion)
553 {
554  // type alias
555  using InputImageType = TInputImage;
556  using OffsetType = typename TInputImage::OffsetType;
557  using OutputImageType = TOutputImage;
558  using OutputPixelType = typename TOutputImage::PixelType;
559  using ValueType = typename OutputPixelType::ValueType;
560  using InputPixelType = typename TInputImage::PixelType;
561 
562  using InputIterator = ImageRegionConstIterator<TInputImage>;
563 
564  using NOutputIterator = ShapedNeighborhoodIterator<TOutputImage>;
565  InputIterator inIt(inputImage, inputRegion);
566  auto kernelRadius = TInputImage::SizeType::Filled(1);
567 
568  NOutputIterator noutIt(kernelRadius, outputImage, outputRegion);
569  // this iterator is fully connected
571 
573  oBC.SetConstant(OutputPixelType{});
574  noutIt.OverrideBoundaryCondition(&oBC);
575  // This uses several iterators. An alternative and probably better
576  // approach would be to copy the input to the output and convolve
577  // with the following weights (in 2D)
578  // -(dim - 1) 1
579  // 1 1
580  // The result of each convolution needs to get written back to the
581  // image being convolved so that the accumulation propagates
582  // This should be implementable with neighborhood operators.
583 
584  std::vector<int> weights;
585  typename NOutputIterator::ConstIterator sIt;
586  for (auto idxIt = noutIt.GetActiveIndexList().begin(); idxIt != noutIt.GetActiveIndexList().end(); ++idxIt)
587  {
588  OffsetType offset = noutIt.GetOffset(*idxIt);
589  int w = -1;
590  for (unsigned int k = 0; k < InputImageType::ImageDimension; ++k)
591  {
592  if (offset[k] != 0)
593  {
594  w *= offset[k];
595  }
596  }
597  weights.push_back(w);
598  }
599 
600  for (inIt.GoToBegin(), noutIt.GoToBegin(); !noutIt.IsAtEnd(); ++inIt, ++noutIt)
601  {
602  ValueType sum = 0;
603  ValueType squareSum = 0;
604  int k;
605  for (k = 0, sIt = noutIt.Begin(); !sIt.IsAtEnd(); ++sIt, ++k)
606  {
607  const OutputPixelType & v = sIt.Get();
608  sum += v[0] * weights[k];
609  squareSum += v[1] * weights[k];
610  }
611  OutputPixelType o;
612  const InputPixelType & i = inIt.Get();
613  o[0] = sum + i;
614  o[1] = squareSum + i * i;
615  noutIt.SetCenterPixel(o);
616  }
617 }
618 } // namespace itk
619 
620 #endif
itk::NeighborhoodAlgorithm::ImageBoundaryFacesCalculator
Splits an image into a main region and several "face" regions which are used to handle computations o...
Definition: itkNeighborhoodAlgorithm.h:63
itkNeighborhoodAlgorithm.h
itk::BoxMeanCalculatorFunction
void BoxMeanCalculatorFunction(const TInputImage *accImage, TOutputImage *outputImage, typename TInputImage::RegionType inputRegion, typename TOutputImage::RegionType outputRegion, typename TInputImage::SizeType radius)
Definition: itkBoxUtilities.h:195
itkOffset.h
itk::BoxSigmaCalculatorFunction
void BoxSigmaCalculatorFunction(const TInputImage *accImage, TOutputImage *outputImage, typename TInputImage::RegionType inputRegion, typename TOutputImage::RegionType outputRegion, typename TInputImage::SizeType radius)
Definition: itkBoxUtilities.h:368
itkProgressReporter.h
itk::GTest::TypedefsAndConstructors::Dimension2::SizeType
ImageBaseType::SizeType SizeType
Definition: itkGTestTypedefsAndConstructors.h:49
itk::Index::SetIndex
void SetIndex(const IndexValueType val[VDimension])
Definition: itkIndex.h:241
itk_impl_details::setConnectivityEarlyBox
TIterator * setConnectivityEarlyBox(TIterator *it, bool fullyConnected=false)
Definition: itkBoxUtilities.h:46
itk_impl_details
Definition: itkBoxUtilities.h:41
itkImageRegionIterator.h
itkImageRegionIteratorWithIndex.h
itk::ShapedNeighborhoodIterator
A neighborhood iterator which can take on an arbitrary shape.
Definition: itkShapedNeighborhoodIterator.h:150
itkConstantBoundaryCondition.h
itk::BoxSquareAccumulateFunction
void BoxSquareAccumulateFunction(const TInputImage *inputImage, TOutputImage *outputImage, typename TInputImage::RegionType inputRegion, typename TOutputImage::RegionType outputRegion)
Definition: itkBoxUtilities.h:549
itk::BoxAccumulateFunction
void BoxAccumulateFunction(const TInputImage *inputImage, const TOutputImage *outputImage, typename TInputImage::RegionType inputRegion, typename TOutputImage::RegionType outputRegion)
Definition: itkBoxUtilities.h:99
itk::ImageRegionIterator
A multi-dimensional iterator templated over image type that walks a region of pixels.
Definition: itkImageRegionIterator.h:80
itk::GTest::TypedefsAndConstructors::Dimension2::IndexType
ImageBaseType::IndexType IndexType
Definition: itkGTestTypedefsAndConstructors.h:50
itk::ConstantBoundaryCondition
This boundary condition returns a constant value for out-of-bounds image pixels.
Definition: itkConstantBoundaryCondition.h:68
itk::Index::GetIndex
const IndexValueType * GetIndex() const
Definition: itkIndex.h:231
itk::GTest::TypedefsAndConstructors::Dimension2::RegionType
ImageBaseType::RegionType RegionType
Definition: itkGTestTypedefsAndConstructors.h:54
itk::CornerOffsets
std::vector< typename TImage::OffsetType > CornerOffsets(const TImage *im)
Definition: itkBoxUtilities.h:164
itk::OffsetValueType
long OffsetValueType
Definition: itkIntTypes.h:97
itk::ConstantBoundaryCondition::SetConstant
void SetConstant(const OutputPixelType &c)
itk::ImageRegionIteratorWithIndex
A multi-dimensional iterator templated over image type that walks pixels within a region and is speci...
Definition: itkImageRegionIteratorWithIndex.h:73
itk::NumericTraits
Define additional traits for native types such as int or float.
Definition: itkNumericTraits.h:60
itkShapedNeighborhoodIterator.h
itk
The "itk" namespace contains all Insight Segmentation and Registration Toolkit (ITK) classes....
Definition: itkAnatomicalOrientation.h:29
itk::ImageRegion::SetIndex
void SetIndex(const IndexType &index)
Definition: itkImageRegion.h:181
itk::ImageRegionConstIterator
A multi-dimensional iterator templated over image type that walks a region of pixels.
Definition: itkImageRegionConstIterator.h:109
itk::ZeroFluxNeumannBoundaryCondition< TInputImage >
itk::ImageRegion::SetSize
void SetSize(const SizeType &size)
Definition: itkImageRegion.h:202
itk::GTest::TypedefsAndConstructors::Dimension2::Dimension
constexpr unsigned int Dimension
Definition: itkGTestTypedefsAndConstructors.h:44
itkZeroFluxNeumannBoundaryCondition.h
itk::SizeValueType
unsigned long SizeValueType
Definition: itkIntTypes.h:86